A001142 a(n) = Product_{k=1..n} k^(2k - 1 - n).
1, 1, 2, 9, 96, 2500, 162000, 26471025, 11014635520, 11759522374656, 32406091200000000, 231627686043080250000, 4311500661703860387840000, 209706417310526095716965894400, 26729809777664965932590782608648192
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..50
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
- Harlan J. Brothers, Finding e in Pascal's Triangle, Mathematics Magazine, 85 (2012), p. 51.
- Harlan J. Brothers, Pascal's Triangle: The Hidden Stor-e, The Mathematical Gazette, 96 (2012), 145-148.
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
- Leroy Quet, Problem 1636, Mathematics Magazine, Dec. 2001, p. 403.
Crossrefs
Programs
-
GAP
List([0..15], n-> Product([0..n], k-> Binomial(n,k) )); # G. C. Greubel, May 23 2019
-
Haskell
a001142 = product . a007318_row -- Reinhard Zumkeller, Mar 16 2015
-
Magma
[(&*[Binomial(n,k): k in [0..n]]): n in [0..15]]; // G. C. Greubel, May 23 2019
-
Maple
a:=n->mul(binomial(n,k), k=0..n): seq(a(n), n=0..14); # Zerinvary Lajos, Jan 22 2008
-
Mathematica
Table[Product[k^(2*k - 1 - n), {k, n}], {n, 0, 20}] (* Harlan J. Brothers, Nov 26 2009 *) Table[Hyperfactorial[n]/BarnesG[n+2], {n, 0, 20}] (* Peter Luschny, Nov 29 2015 *) Table[Product[(n - k + 1)^(n - 2 k + 1), {k, 1, n}], {n, 0, 20}] (* Harlan J. Brothers, Aug 26 2023 *)
-
Maxima
a(n):= prod(binomial(n,k),k,0,n); n : 15; for i from 0 thru n do print (a(i)); /* Valentin Bakoev, May 17 2019 */
-
PARI
for(n=0,16,print(prod(m=1,n,binomial(n,m))))
-
PARI
A001142(n) = prod(k=1, n, k^((k+k)-1-n)); \\ Antti Karttunen, Nov 02 2014
-
Python
from math import factorial, prod from fractions import Fraction def A001142(n): return prod(Fraction((k+1)**k,factorial(k)) for k in range(1,n)) # Chai Wah Wu, Jul 15 2022
-
Sage
a = lambda n: prod(k^k/factorial(k) for k in (1..n)) [a(n) for n in range(20)] # Peter Luschny, Nov 29 2015
-
Scheme
(define (A001142 n) (mul (lambda (k) (expt k (+ k k -1 (- n)))) 1 n)) (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i))))))) ;; Antti Karttunen, Oct 28 2014
Formula
a(n) = C(n, 0)*C(n, 1)* ... *C(n, n).
From Harlan J. Brothers, Nov 26 2009: (Start)
a(n) = Product_{j=1..n-2} Product_{k=1..j} (1+1/k)^k, n >= 3.
a(1) = a(2) = 1, a(n) = a(n-1) * Product_{k=1..n-2} (1+1/k)^k. (End)
a(n) ~ A^2 * exp(n^2/2 + n - 1/12) / (n^(n/2 + 1/3) * (2*Pi)^((n+1)/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
a(n) = Product_{i=1..n} Product_{j=1..i} (i/j). - Pedro Caceres, Apr 06 2019
a(n) = Product_{k=1..n} (n - k + 1)^(n - 2*k + 1). - Harlan J. Brothers, Aug 26 2023
Extensions
More terms from James Sellers, May 01 2000
Better description from Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
Comments