cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A056056 Square root of largest square dividing n-th central binomial coefficient.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 2, 2, 2, 3, 3, 1, 2, 1, 2, 2, 2, 1, 2, 10, 10, 30, 30, 6, 12, 3, 3, 3, 6, 5, 10, 10, 10, 3, 6, 2, 2, 2, 2, 30, 60, 15, 30, 42, 42, 42, 42, 14, 28, 2, 2, 2, 4, 2, 4, 4, 4, 21, 21, 7, 14, 7, 14, 6, 6, 1, 2, 2, 2, 10, 10, 70, 140, 7, 14, 126, 126, 6, 6, 30, 60
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sqrt@ Max@ Select[Divisors@ Binomial[n, Floor[n/2]], IntegerQ@ Sqrt@ # &], {n, 0, 86}] (* Michael De Vlieger, Jul 04 2016 *)
    a[n_] := Times @@ (First[#]^Floor[Last[#]/2] & /@ FactorInteger[Binomial[n, Floor[n/2]]]); Array[a, 100] (* Amiram Eldar, Sep 06 2020 *)
  • PARI
    a(n) = b = binomial(n, n\2); sqrtint(b/core(b)); \\ Michel Marcus, Dec 10 2013

Formula

a(n) = A000188(A001405(n)).

A056059 GCD of largest square and squarefree part of central binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 6, 2, 1, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 6, 3, 1, 1, 1, 2, 3, 6, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 3, 6, 6, 3, 1, 2, 2, 1, 2, 1, 3, 6, 1, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Examples

			n=14, binomial(14,7) = 3432 = 8*3*11*13. The largest square divisor is 4, squarefree part is 858. So a(14) = gcd(4,858) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[First@ Select[Reverse@ Divisors@ #, IntegerQ@ Sqrt@ # &], Times @@ Power @@@ Map[{#1, Mod[#2, 2]} & @@ # &, FactorInteger@ #]] &@ Binomial[n, Floor[n/2]], {n, 80}] (* Michael De Vlieger, Feb 18 2017, after Zak Seidov at A007913 *)
  • PARI
    A001405(n) = binomial(n, n\2);
    A055229(n) = { my(c=core(n)); gcd(c, n/c); } \\ Charles R Greathouse IV, Nov 20 2012
    A056059(n) = A055229(A001405(n)); \\ Antti Karttunen, Jul 20 2017
    
  • Python
    from sympy import binomial, gcd
    from sympy.ntheory.factor_ import core
    def a001405(n): return binomial(n, n//2)
    def a055229(n):
        c = core(n)
        return gcd(c, n//c)
    def a(n): return a055229(a001405(n))
    print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 20 2017

Formula

a(n) = A055229(A001405(n)), where A055229(n) = gcd(A008833(n), A007913(n)).

Extensions

Formula clarified by Antti Karttunen, Jul 20 2017

A056057 The largest square which divides n-th central binomial coefficient.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 9, 36, 1, 4, 4, 4, 9, 9, 1, 4, 1, 4, 4, 4, 1, 4, 100, 100, 900, 900, 36, 144, 9, 9, 9, 36, 25, 100, 100, 100, 9, 36, 4, 4, 4, 4, 900, 3600, 225, 900, 1764, 1764, 1764, 1764, 196, 784, 4, 4, 4, 16, 4, 16, 16, 16, 441, 441, 49, 196, 49, 196, 36, 36, 1, 4
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[First@ Select[Reverse@ Divisors@ Binomial[n, Floor[n/2]], IntegerQ@ Sqrt@ # &], {n, 72}] (* Michael De Vlieger, Feb 18 2017 *)
    a[n_] := Times @@ (First[#]^(2*Floor[Last[#]/2]) & /@ FactorInteger[Binomial[n, Floor[n/2]]]); Array[a, 100] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A008833(A001405(n)).
a(A046098(n)) = 1.

A056061 Number of square divisors of central binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 4, 4, 8, 8, 4, 6, 2, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 2, 8, 12, 4, 8, 8, 8, 8, 8, 4, 6, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 2, 4, 2, 4, 4, 4, 1, 2, 2, 2, 4, 4, 8, 12, 2, 4, 12, 12, 4, 4, 8, 12, 12, 12, 4, 6, 8, 12, 12, 12, 8, 16, 8, 8, 6
Offset: 1

Views

Author

Labos Elemer Jul 26 2000

Keywords

Examples

			n=27: binomial(27,13) = 20058300, its largest square-divisor is 900=30^2 so a(27) = tau(30) = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Divisors@ Binomial[n, Floor[n/2]], d_ /; IntegerQ@ Sqrt@ d], {n, 0, 84}] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    a(n) = sumdiv(binomial(n, n\2), d, issquare(d)); \\ Michel Marcus, Feb 19 2017

Formula

A048633 Largest squarefree number dividing n-th central binomial coefficient C(n,[ n/2 ]).

Original entry on oeis.org

1, 2, 3, 6, 10, 10, 35, 70, 42, 42, 462, 462, 858, 858, 2145, 4290, 24310, 24310, 92378, 92378, 176358, 176358, 1352078, 1352078, 520030, 520030, 222870, 222870, 6463230, 6463230, 100180065, 200360130, 129644790, 129644790, 907513530
Offset: 1

Views

Author

Keywords

Comments

a(2k+1)=a(2k+2) unless 2k+1 is in A000225, in which case a(2k+2)=2*a(2k+1). - Robert Israel, Jan 21 2020

Examples

			n=10: C(10,5)=252=2*2*3*3*7. The largest squarefree number dividing the 10th central binomial coefficient is 2*3*7=42. Thus a(10)=42
		

Crossrefs

Equals A007947(A001405(n)). Cf. A034973, A000225.
See A056058 for another version.

Programs

  • Magma
    [&*PrimeDivisors(Binomial(n, Floor(n/2))): n in [1..35]]; // Marius A. Burtea, Jan 21 2020
  • Maple
    f:= n -> convert(numtheory:-factorset(binomial(n,floor(n/2))),`*`):
    map(f, [$1..50]); # Robert Israel, Jan 21 2020
  • Mathematica
    Table[Last@ Select[Divisors@ Binomial[n, Floor[n/2]], SquareFreeQ], {n, 35}] (* Michael De Vlieger, Feb 05 2017 *)
  • PARI
    a(n)=factorback(factor(binomial(n,n\2))[,1]) \\ Charles R Greathouse IV, Nov 05 2017
    

A056060 The powerfree part of the central binomial coefficients.

Original entry on oeis.org

1, 2, 3, 6, 10, 5, 35, 70, 14, 7, 462, 231, 429, 429, 715, 1430, 24310, 12155, 92378, 46189, 88179, 88179, 1352078, 676039, 52003, 52003, 7429, 7429, 1077205, 1077205, 33393355, 66786710, 43214930, 21607465, 181502706, 90751353, 176726319, 176726319, 7658140490
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Examples

			n=14, binomial(14,7) = 3432 = 8*3*11*13. The largest square divisor is 4, and the squarefree part is 858. So GCD(4,858) = 2 and a(14) = 858/2 = 429.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Denominator[(b = Binomial[n, Floor[n/2]])/(Times @@ First /@ FactorInteger[b])^2]; Array[a, 36] (* Amiram Eldar, Sep 05 2020 *)

Formula

a(n) = A055231(A001405(n)).

Extensions

New name and more terms from Amiram Eldar, Sep 05 2020
Showing 1-6 of 6 results.