A048640 Binary encoding of the squarefree numbers, A005117.
1, 2, 4, 8, 6, 16, 10, 32, 64, 18, 12, 128, 256, 20, 34, 512, 66, 1024, 14, 2048, 36, 130, 24, 4096, 258, 68, 8192, 22, 16384, 514, 32768, 132, 65536, 40, 260, 1026, 131072, 262144, 2050, 72, 38, 524288, 516, 26, 1048576, 2097152, 4098, 48, 70, 4194304
Offset: 1
Keywords
Examples
10 = 2*5 = p_1*p_3 -> 2^1+2^3 = 2+8 = 10.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A048639.
Programs
-
Mathematica
Total[2^PrimePi@ # &@ Map[First, FactorInteger@ #]] & /@ Select[Range@ 80, SquareFreeQ] (* Michael De Vlieger, Oct 01 2015 *)
-
PARI
lista(nn) = {for (n=1, nn, if (issquarefree(n), if (n==1, x = n, f = factor(n); x = sum(k=1, #f~, 2^primepi(f[k,1]))); print1(x, ", ");););} \\ Michel Marcus, Oct 01 2015
-
Python
from math import isqrt from sympy import mobius, primepi, primefactors def A048640(n): if n == 1: return 1 def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return sum(1<
Chai Wah Wu, Dec 23 2024
Formula
a(n) = 2^i1+2^i2+...+2^iz, where A005117(n) = p_i1*p_i2*p_i3*...*p_iz (p_i stands for the i-th prime, where the first prime is 2).