cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048640 Binary encoding of the squarefree numbers, A005117.

Original entry on oeis.org

1, 2, 4, 8, 6, 16, 10, 32, 64, 18, 12, 128, 256, 20, 34, 512, 66, 1024, 14, 2048, 36, 130, 24, 4096, 258, 68, 8192, 22, 16384, 514, 32768, 132, 65536, 40, 260, 1026, 131072, 262144, 2050, 72, 38, 524288, 516, 26, 1048576, 2097152, 4098, 48, 70, 4194304
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Examples

			10 = 2*5 = p_1*p_3 -> 2^1+2^3 = 2+8 = 10.
		

Crossrefs

Cf. A048639.

Programs

  • Mathematica
    Total[2^PrimePi@ # &@ Map[First, FactorInteger@ #]] & /@ Select[Range@ 80, SquareFreeQ] (* Michael De Vlieger, Oct 01 2015 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (issquarefree(n), if (n==1, x = n, f = factor(n); x = sum(k=1, #f~, 2^primepi(f[k,1]))); print1(x, ", ");););} \\ Michel Marcus, Oct 01 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi, primefactors
    def A048640(n):
        if n == 1: return 1
        def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return sum(1<Chai Wah Wu, Dec 23 2024

Formula

a(n) = 2^i1+2^i2+...+2^iz, where A005117(n) = p_i1*p_i2*p_i3*...*p_iz (p_i stands for the i-th prime, where the first prime is 2).