A048701 List of binary palindromes of even length (written in base 10).
0, 3, 9, 15, 33, 45, 51, 63, 129, 153, 165, 189, 195, 219, 231, 255, 513, 561, 585, 633, 645, 693, 717, 765, 771, 819, 843, 891, 903, 951, 975, 1023, 2049, 2145, 2193, 2289, 2313, 2409, 2457, 2553, 2565, 2661, 2709, 2805, 2829, 2925, 2973, 3069, 3075, 3171, 3219, 3315
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..9999
Crossrefs
Programs
-
Haskell
a048701 n = foldr (\d v -> 2 * v + d) 0 (reverse bs ++ bs) where bs = a030308_row (n) -- Reinhard Zumkeller, Feb 19 2003, Oct 21 2011
-
Mathematica
Prepend[Select[Range@ 3315, Reverse@ # == # && EvenQ@ Length@ # &@ IntegerDigits[#, 2] &], 0] (* Michael De Vlieger, Dec 04 2015 *)
-
PARI
a048701(n) = my(f); f = length(binary(n)) - 1; 2^(f+1)*n + sum(i=0, f, bittest(n, i) * 2^(f-i)); \\ Altug Alkan, Dec 03 2015
-
Python
def A048701(n): s = bin(n)[2:] return int(s+s[::-1],2) # Chai Wah Wu, Feb 26 2021
Formula
a(n) = (2^(floor_log_2(n)+1))*n + Sum_{i=0..floor_log_2(n)} '(bit_i(n, i)*(2^(floor_log_2(n)-i)))'.
Extensions
Offset corrected by Reinhard Zumkeller, Oct 21 2011
Offset changed back to 0 by Andrey Zabolotskiy, Dec 26 2022
Comments