A048740 Product of divisors of n-th composite number.
8, 36, 64, 27, 100, 1728, 196, 225, 1024, 5832, 8000, 441, 484, 331776, 125, 676, 729, 21952, 810000, 32768, 1089, 1156, 1225, 10077696, 1444, 1521, 2560000, 3111696, 85184, 91125, 2116, 254803968, 343, 125000, 2601, 140608, 8503056, 3025, 9834496
Offset: 1
Examples
The third composite number is 8. The product of all divisors of 8 is 8*4*2*1 = 64. Divisors(48) = {1,2,3,4,6,8,12,16,24,48} => product {1,2,3,4,6,8,12,16,24,48} = 254803968. Divisors(49) = {1,7,49} => product {1,7,49} = 343. Divisors(50) = {1,2,5,10,25,50} => product {1,2,5,10,25,50} = 125000.
References
- Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed., pages 10, 23. New York: Dover, 1966. ISBN 0-486-21096-0.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Rest[Times@@Divisors[#]&/@Complement[Range[100], Prime[ Range[ PrimePi[ 100]]]]] (* Harvey P. Dale, Jan 08 2011 *) pd[n_] := n^(DivisorSigma[0, n]/2); pd /@ Select[Range[100], CompositeQ] (* Amiram Eldar, Sep 07 2019 *)
-
Python
from math import isqrt from sympy import divisor_count, composite def A048740(n): return (lambda m:isqrt(m)**c if (c:=divisor_count(m)) & 1 else m**(c//2))(composite(n)) # Chai Wah Wu, Jun 25 2022
Formula
Extensions
Corrected by Neven Juric (neven.juric(AT)apis-it.hr), May 25 2006