cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048740 Product of divisors of n-th composite number.

Original entry on oeis.org

8, 36, 64, 27, 100, 1728, 196, 225, 1024, 5832, 8000, 441, 484, 331776, 125, 676, 729, 21952, 810000, 32768, 1089, 1156, 1225, 10077696, 1444, 1521, 2560000, 3111696, 85184, 91125, 2116, 254803968, 343, 125000, 2601, 140608, 8503056, 3025, 9834496
Offset: 1

Views

Author

Keywords

Examples

			The third composite number is 8. The product of all divisors of 8 is 8*4*2*1 = 64.
Divisors(48) = {1,2,3,4,6,8,12,16,24,48} => product {1,2,3,4,6,8,12,16,24,48} = 254803968.
Divisors(49) = {1,7,49} => product {1,7,49} = 343.
Divisors(50) = {1,2,5,10,25,50} => product {1,2,5,10,25,50} = 125000.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed., pages 10, 23. New York: Dover, 1966. ISBN 0-486-21096-0.

Crossrefs

Programs

  • Mathematica
    Rest[Times@@Divisors[#]&/@Complement[Range[100], Prime[ Range[ PrimePi[ 100]]]]] (* Harvey P. Dale, Jan 08 2011 *)
    pd[n_] := n^(DivisorSigma[0, n]/2); pd /@ Select[Range[100], CompositeQ] (* Amiram Eldar, Sep 07 2019 *)
  • Python
    from math import isqrt
    from sympy import divisor_count, composite
    def A048740(n): return (lambda m:isqrt(m)**c if (c:=divisor_count(m)) & 1 else m**(c//2))(composite(n)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(A002808(n)). - Michel Marcus, Sep 07 2019

Extensions

Corrected by Neven Juric (neven.juric(AT)apis-it.hr), May 25 2006