A048751 Composites k whose product of divisors divided by number of divisors is an integer.
6, 8, 9, 10, 12, 14, 18, 22, 24, 26, 30, 34, 36, 38, 40, 42, 46, 54, 56, 58, 60, 62, 66, 70, 72, 74, 78, 80, 82, 84, 86, 88, 90, 94, 96, 102, 104, 106, 108, 110, 114, 118, 120, 122, 126, 128, 130, 132, 134, 136, 138, 142, 146, 150, 152, 154, 156, 158, 166, 168, 170
Offset: 1
Examples
For k=8, product of divisors is 8*4*2*1=64; number of divisors = 4; 64/4 = 16 (an integer), so 8 is a term.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[200],CompositeQ[#]&&IntegerQ[(Times@@Divisors[#])/ DivisorSigma[ 0,#]]&] (* Harvey P. Dale, Aug 21 2021 *)
-
PARI
isok(n) = (n!=1) && ! isprime(n) && (d = divisors(n)) && ((prod(i=1, #d, d[i]) % numdiv(n)) == 0); \\ Michel Marcus, Jun 05 2014
-
PARI
is(n)=my(f=factor(n)); n>5 && !isprime(n) && if(gcd(f[,2])%2, n^(numdiv(f)/2), sqrtint(n)^numdiv(f))%numdiv(f)==0 \\ Charles R Greathouse IV, Jun 06 2014
Extensions
Corrected by Michel Marcus, Jun 05 2014
Comments