A048794 Subsets of natural numbers arranged in standard statistical (or Yates) order.
0, 1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234, 5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345, 12345, 6, 16, 26, 126, 36, 136, 236, 1236, 46, 146, 246, 1246, 346, 1346, 2346, 12346, 56, 156, 256, 1256, 356, 1356
Offset: 0
Examples
empty; 1; 2; 1 2; 3; 1 3; 2 3; 1 2 3;...
References
- S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, p. 249.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
C
#include
#include #define USAGE "Usage: 'A048794 num' where num is the largest number to use creating sets.\n" #define MAX_NUM 10 #define MAX_ROW 1024 int main(int argc, char *argv[]) { unsigned char a[MAX_ROW][MAX_NUM]; signed short old_row, new_row, i, j, end; if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; } end = atoi(argv[1]); end = (end > MAX_NUM) ? MAX_NUM: end; for (i = 0; i < MAX_ROW; i++) for ( j = 0; j < MAX_NUM; j++) a[i][j] = 0; a[1][0] = '1'; new_row = 2; for (i = 2; i <= end; i++) { sprintf(&a[new_row++ ][0], "%d", i); for (old_row = 1; a[old_row][0] != (i+48); old_row++) { sprintf(&a[new_row++ ][0], "%s%d", &a[old_row][0], i); } } fprintf(stdout, "Values: 0"); for (i = 1; a[i][0] != 0; i++) fprintf(stdout, ",%s", &a[i][0]); fprintf(stdout, "\n"); return EXIT_SUCCESS; } -
Haskell
a048794 n = a048794_list !! n a048794_list = map (read . concatMap show) a048793_tabf :: [Integer] -- Reinhard Zumkeller, Nov 16 2013
-
Maple
a:= n-> (l-> parse(cat(0, seq(`if`(l[i]=1, i, [][]) , i=1..nops(l)))))(Bits[Split](n)): seq(a(n), n=0..53); # Alois P. Heinz, Feb 01 2023
-
Mathematica
nmax = 6; s[0] = {{}}; s[n_] := s[n] = Join[s[n-1], Append[#, n]& /@ s[n-1]]; FromDigits /@ s[nmax] (* Jean-François Alcover, Nov 15 2011 *)
Formula
Constructed recursively: subsets that include n are obtained by appending n to all earlier subsets.
From Alois P. Heinz, Feb 02 2023: (Start)
a(floor(2^(n-1))) = a(A131577(n)) = n.
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2000
Keyword base added by Reinhard Zumkeller, Nov 16 2013
Comments