cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048816 Number of rooted trees with n nodes with every leaf at the same height.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 28, 42, 68, 103, 168, 260, 420, 665, 1075, 1716, 2787, 4489, 7304, 11849, 19333, 31504, 51561, 84347, 138378, 227096, 373445, 614441, 1012583, 1669774, 2756951, 4555183, 7533988, 12469301, 20655523, 34238310, 56795325, 94270949
Offset: 1

Views

Author

Christian G. Bower, Apr 15 1999

Keywords

Comments

The trees are unordered (see A000081). For balanced ordered rooted trees see A079500. - Joerg Arndt, Jul 20 2014
The trees are unlabeled. For labeled version see A238372. - Alois P. Heinz, Dec 29 2014

Examples

			See Arndt link.
From _Gus Wiseman_, Oct 08 2018: (Start)
The a(1) = 1 through a(7) = 12 balanced rooted trees with n nodes:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)      (oooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))     ((ooooo))
                 (((o)))  (((oo)))   (((ooo)))    (((oooo)))
                          ((o)(o))   ((o)(oo))    ((o)(ooo))
                          ((((o))))  ((((oo))))   ((oo)(oo))
                                     (((o)(o)))   ((((ooo))))
                                     (((((o)))))  (((o)(oo)))
                                                  ((o)(o)(o))
                                                  (((((oo)))))
                                                  ((((o)(o))))
                                                  (((o))((o)))
                                                  ((((((o))))))
(End)
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n==1, 1, If[k==0, 0, Sum[Sum[If[dJean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A244925 Number T(n,k) of n-node unlabeled rooted trees with every leaf at height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 3, 2, 1, 1, 0, 1, 4, 5, 3, 2, 1, 1, 0, 1, 7, 7, 6, 3, 2, 1, 1, 0, 1, 8, 12, 8, 6, 3, 2, 1, 1, 0, 1, 12, 18, 15, 9, 6, 3, 2, 1, 1, 0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1, 0, 1, 21, 42, 39, 26, 17, 9, 6, 3, 2, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 08 2014

Keywords

Examples

			The A048816(5) = 5 rooted trees with 5 nodes with every leaf at the same height sorted by height are:
  :    o    :   o     o   :   o   :  o  :
  :  /( )\  :  / \    |   :   |   :  |  :
  : o o o o : o   o   o   :   o   :  o  :
  :         : |   |  /|\  :   |   :  |  :
  :         : o   o o o o :   o   :  o  :
  :         :             :  / \  :  |  :
  :         :             : o   o :  o  :
  :         :             :       :  |  :
  :         :             :       :  o  :
  :         :             :       :     :
  : ---1--- : -----2----- : --3-- : -4- :
Thus row 5 = [0, 1, 2, 1, 1].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  1,  1;
  0, 1,  2,  1,  1;
  0, 1,  2,  2,  1,  1;
  0, 1,  4,  3,  2,  1, 1;
  0, 1,  4,  5,  3,  2, 1, 1;
  0, 1,  7,  7,  6,  3, 2, 1, 1;
  0, 1,  8, 12,  8,  6, 3, 2, 1, 1;
  0, 1, 12, 18, 15,  9, 6, 3, 2, 1, 1;
  0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007(n-1), A000012 (for n>0), A002865(n-1) (for n>2), A048808, A048809, A048810, A048811, A048812, A048813, A048814, A048815.
T(2n+1,n) gives A074045.
Row sums give A048816.

Programs

  • Maple
    with(numtheory):
    T:= proc(n, k) option remember; `if`(n=1, 1, `if`(k=0, 0,
          add(add(`if`(d
    				
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 1, 1, If[k == 0, 0, Sum[ Sum[ If[dJean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

A074045 Number of rooted trees of 2n+1 nodes with every leaf at height n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 17, 28, 49, 83, 145, 246, 427, 729, 1256, 2152, 3702, 6341, 10892, 18662, 32016, 54853, 94034, 161055, 275929, 472461, 809033, 1384848, 2370434, 4056309, 6940744, 11873769, 20311018, 34737781, 59405959, 101577454, 173669088, 296890268
Offset: 0

Views

Author

Christian G. Bower, Aug 13 2002. Suggested by Paul D. Hanna

Keywords

Crossrefs

Limit of A048808-A048815.
Cf. A244925.

Formula

a(n) = A244925(2n+1,n).
Showing 1-3 of 3 results.