A048833 Number of starting positions of Nim with 2n pieces such that 2nd player wins. Partitions of 2n such that xor-sum of partitions is 0.
1, 1, 2, 4, 6, 10, 16, 31, 43, 68, 98, 153, 213, 317, 443, 704, 971, 1415, 1975, 2818, 3865, 5401, 7366, 10142, 13639, 18438, 24583, 32861, 43345, 57268, 75175, 99119, 129278, 168796, 219614, 284887, 368546, 475919, 614379, 788845, 1012117, 1293980, 1654090
Offset: 0
Keywords
Examples
For n=4 the 6 partitions of 8 are [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2], [2, 2, 2, 2], [1, 1, 1, 2, 3], [1, 1, 3, 3] and [4, 4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..750
- C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics, Second Series, vol. 3 (1/4), 1902, 35-39.
- R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, The Game of timber!, hal-00985731, 2013.
Programs
-
Maple
read("transforms") : # defines XORnos A048833 := proc(n) local p, xrs,i,a ; if n = 0 then return 1 ; end if; a := 0 ; for p in combinat[partition](2*n) do xrs := op(1,p) ; for i from 2 to nops(p) do xrs := XORnos(xrs,op(i,p)) ; end do: if xrs = 0 then a := a+1 ; end if; end do: a ; end proc: # R. J. Mathar, Apr 29 2022
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, x^k, If[i < 1, 0, Sum[b[n-i*j, i-1, If[EvenQ[j], k, BitXor[i, k]]], {j, 0, n/i}]]]; a[n_] := Coefficient[b[2n, 2n, 0], x, 0]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 25 2024, after Alois P. Heinz in A050314 *)
Formula
a(n) = A050314(2n, 0): column 0 of triangle.
Comments