cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048833 Number of starting positions of Nim with 2n pieces such that 2nd player wins. Partitions of 2n such that xor-sum of partitions is 0.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 16, 31, 43, 68, 98, 153, 213, 317, 443, 704, 971, 1415, 1975, 2818, 3865, 5401, 7366, 10142, 13639, 18438, 24583, 32861, 43345, 57268, 75175, 99119, 129278, 168796, 219614, 284887, 368546, 475919, 614379, 788845, 1012117, 1293980, 1654090
Offset: 0

Views

Author

Christian G. Bower, Jun 15 1999

Keywords

Comments

Number of different prime signatures of the 2n-almost primes in A268390. - Peter Munn, Dec 02 2021

Examples

			For n=4 the 6 partitions of 8 are [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2], [2, 2, 2, 2], [1, 1, 1, 2, 3], [1, 1, 3, 3] and [4, 4].
		

Crossrefs

Programs

  • Maple
    read("transforms") : # defines XORnos
    A048833 := proc(n)
        local p, xrs,i,a ;
        if n = 0 then
            return 1 ;
        end if;
        a := 0 ;
        for p in combinat[partition](2*n) do
            xrs := op(1,p) ;
            for i from 2 to nops(p) do
                xrs := XORnos(xrs,op(i,p)) ;
            end do:
            if xrs = 0 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 29 2022
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, x^k, If[i < 1, 0, Sum[b[n-i*j, i-1, If[EvenQ[j], k, BitXor[i, k]]], {j, 0, n/i}]]];
    a[n_] := Coefficient[b[2n, 2n, 0], x, 0];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 25 2024, after Alois P. Heinz in A050314 *)

Formula

a(n) = A050314(2n, 0): column 0 of triangle.