cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048849 a(n) = prime(phi(n)) + phi(prime(n)).

Original entry on oeis.org

3, 4, 7, 9, 17, 15, 29, 25, 35, 35, 59, 43, 77, 55, 65, 71, 111, 73, 127, 89, 109, 107, 161, 107, 167, 137, 163, 143, 215, 131, 239, 183, 207, 191, 237, 187, 307, 223, 255, 225, 351, 217, 371, 263, 285, 277, 409, 275, 407, 299, 363, 327, 479, 311, 429, 351, 419
Offset: 1

Views

Author

Keywords

Comments

I made this up to demonstrate how easy it is to construct dull but unguessable sequences with short descriptions.

Crossrefs

Programs

  • Magma
    [NthPrime(EulerPhi(n)) + EulerPhi(NthPrime(n)) : n in [1..100]]; // G. C. Greubel, Feb 22 2024
    
  • Maple
    with(numtheory); [ seq(ithprime(phi(i))+phi(ithprime(i)),i=1..80) ];
  • Mathematica
    Table[Prime[EulerPhi[n]] + EulerPhi[Prime[n]], {n,100}] (* G. C. Greubel, Feb 22 2024 *)
  • SageMath
    [nth_prime(euler_phi(n)) + euler_phi(nth_prime(n)) for n in range(1,101)] # G. C. Greubel, Feb 22 2024

Extensions

Offset corrected by G. C. Greubel, Feb 22 2024

A103176 Let p = prime(sigma(n)) and q = prime(phi(n)), then p is in the sequence if p-q = 6.

Original entry on oeis.org

13, 19, 43, 113, 463, 619, 863, 1789, 2273, 2383, 4519, 4789, 4937, 5443, 5507, 5653, 8237, 10459, 13007, 13697, 16063, 16453, 17389, 18313, 18919, 20903, 21193, 21319, 21383, 23567, 24109, 25309, 26267, 27947, 28283, 29573, 30559, 31183, 31517
Offset: 1

Views

Author

Labos Elemer, Mar 02 2005

Keywords

Comments

Conjecture: In all cases sigma(n)-phi(n)=2, i.e., n is prime.
Proof: Suppose n is composite. Then sigma(n) > n + sqrt(n) and phi(n) <= n - sqrt(n) and so prime(sigma(n)) - prime(phi(n)) >= sigma(n) - phi(n) > 2*sqrt(n) > 6 for n > 9. - Charles R Greathouse IV, May 15 2013

Examples

			n=3719, sigma(n)=3720, phi(n)=3718, a(n)=p(sigma(n))=34847.
		

Crossrefs

Programs

  • Mathematica
    Do[g=n;a=Prime[u=DivisorSigma[1,n]]; b=Prime[w=EulerPhi[n]];s=a-b; If[Equal[s,6],Print[{n,a,b,u,w,u-w}]; ta=Append[ta,a]],{n,1,10000}] ta=Delete[ta,1]
    Prime[DivisorSigma[1,#]]&/@Select[Range[5000],Prime[DivisorSigma[ 1,#]] == Prime[ EulerPhi[#]]+6&] (* Harvey P. Dale, Sep 22 2016 *)
  • PARI
    p=2;q=3;forprime(r=5,1e6,if(r-p==6 && isprime(primepi(q)), print1(r", "));p=q;q=r) \\ Charles R Greathouse IV, May 15 2013

Extensions

a(1) corrected by Charles R Greathouse IV, May 15 2013
Showing 1-2 of 2 results.