A048852 Difference between b^2 (in c^2=a^2+b^2) and product of successive prime pairs.
0, 3, 10, 14, 44, 26, 68, 38, 92, 174, 62, 222, 164, 86, 188, 318, 354, 122, 402, 284, 146, 474, 332, 534, 776, 404, 206, 428, 218, 452, 1778, 524, 822, 278, 1490, 302, 942, 978, 668, 1038, 1074, 362, 1910, 386, 788, 398, 2532, 2676, 908, 458, 932, 1434, 482
Offset: 0
Examples
a(3)=10. Product of 3rd prime pair 3*5=15 (after 2*2=4 and 2*3=6). b^2=25 (in c^2=a^2+b^2) where c^2=34 and a^2=9. Then 25-15=10.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
[0] cat [NthPrime(n+1)*(NthPrime(n+1)-NthPrime(n)): n in [1..60]]; // G. C. Greubel, Feb 22 2024
-
Mathematica
With[{P=Prime}, Table[If[n==0, 0, P[n+1]*(P[n+1]-P[n])], {n,0,60}]] (* G. C. Greubel, Feb 22 2024 *)
-
SageMath
p=nth_prime; [0]+[p(n+1)*(p(n+1)-p(n)) for n in range(1,61)] # G. C. Greubel, Feb 22 2024
Formula
Find b^2 in Pythagorean formula c^2=a^2+b^2. Subtract product of successive prime pair at same a(n) beginning at 2*2.