cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048888 a(n) = Sum_{m=1..n} T(m,n+1-m), array T as in A048887.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 42, 76, 139, 255, 471, 873, 1627, 3044, 5718, 10779, 20387, 38673, 73561, 140267, 268065, 513349, 984910, 1892874, 3643569, 7023561, 13557019, 26200181, 50691977, 98182665, 190353369, 369393465, 717457655
Offset: 0

Views

Author

Keywords

Comments

From Marc LeBrun, Dec 12 2001: (Start)
Define a "numbral arithmetic" by replacing addition with binary bitwise inclusive-OR (so that [3] + [5] = [7] etc.) and multiplication becomes shift-&-OR instead of shift-&-add (so that [3] * [3] = [7] etc.). [d] divides [n] means there exists an [e] with [d] * [e] = [n]. For example the six divisors of [14] are [1], [2], [3], [6], [7] and [14]. Then it appears that this sequence gives the number of proper divisors of [2^n-1]. Conjecture confirmed by Richard C. Schroeppel, Dec 14 2001. (End)
The number of "prime endofunctions" on n points, meaning the cardinality of the subset of the A001372(n) mappings (or mapping patterns) up to isomorphism from n (unlabeled) points to themselves (endofunctions) which are neither the sum of prime endofunctions (i.e., whose disjoint connected components are prime endofunctions) nor the categorical product of prime endofunctions. The n for which a(n) is prime (n such that the number of prime endofunctions on n points is itself prime) are 2, 4, 5, 6, 9, 13, 19, ... - Jonathan Vos Post, Nov 19 2006
For n>=1, compositions p(1)+p(2)+...+p(m)=n such that p(k)<=p(1)+1, see example. - Joerg Arndt, Dec 28 2012

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)<=p(1)+1:
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 2 1 1 ]
[ 5]  [ 1 1 2 2 ]
[ 6]  [ 1 2 1 1 1 ]
[ 7]  [ 1 2 1 2 ]
[ 8]  [ 1 2 2 1 ]
[ 9]  [ 2 1 1 1 1 ]
[10]  [ 2 1 1 2 ]
[11]  [ 2 1 2 1 ]
[12]  [ 2 1 3 ]
[13]  [ 2 2 1 1 ]
[14]  [ 2 2 2 ]
[15]  [ 2 3 1 ]
[16]  [ 3 1 1 1 ]
[17]  [ 3 1 2 ]
[18]  [ 3 2 1 ]
[19]  [ 3 3 ]
[20]  [ 4 1 1 ]
[21]  [ 4 2 ]
[22]  [ 5 1 ]
[23]  [ 6 ]
(End)
		

Crossrefs

Programs

  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=0,N,  (1-x^n)*x^n/(1-2*x+x^(n+1)) ) + 'c0;
    v = Vec(gf);  v[1]-='c0;  v
    /* Joerg Arndt, Apr 14 2013 */

Formula

G.f.: Sum_{k>0} x^k*(1-x^k)/(1-2*x+x^(k+1)). - Vladeta Jovovic, Feb 25 2003
a(m) = Sum_{ n=2..m+1 } Fn(m) where Fn is a Fibonacci n-step number (Fibonacci, tetranacci, etc.) indexed as in A000045, A000073, A000078. - Gerald McGarvey, Sep 25 2004