A048910 Indices of 9-gonal numbers that are also square.
1, 2, 18, 49, 529, 1458, 15842, 43681, 474721, 1308962, 14225778, 39225169, 426298609, 1175446098, 12774732482, 35224157761, 382815675841, 1055549286722, 11471695542738, 31631254443889, 343768050606289, 947882084029938, 10301569822645922, 28404831266454241
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Nonagonal Square Number
- Index entries for linear recurrences with constant coefficients, signature (1,30,-30,-1,1).
Programs
-
Mathematica
LinearRecurrence[ {1, 30, - 30, -1, 1 }, {1, 2, 18, 49, 529}, 21 ] (* Ant King, Nov 18 2011 *)
-
PARI
Vec(-x*(x^4+x^3-14*x^2+x+1)/((x-1)*(x^4-30*x^2+1)) + O(x^50)) \\ Colin Barker, Jun 22 2015
Formula
From Ant King, Nov 18 2011: (Start)
a(n) = 30 * a(n - 2) - a(n-4) - 10.
a(n) = a(n - 1) + 30 * a(n - 2) - 30 * a(n - 3) - a(n - 4) + a(n - 5).
Let p = 9 + 4 * sqrt(2) + sqrt(7) + 2 * sqrt(14) and q = 9 - 4 * sqrt(2) - sqrt(7) + 2 * sqrt(14). Then
a(n) = 1/56 * ( ( p - q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7))^(n - 1) + ( p + q * (-1)^n) * ( 2 * sqrt(2) - sqrt(7))^n + 20 ).
a(n) = ceiling (1/56 * ( p - q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7))^(n - 1) ).
G.f.: x * (1 + x - 14 * x^2 + x^3 + x^4) / ((1 - x) * (1 - 30 * x^2 + x^4)).
(End)
Comments