A048927 Numbers that are the sum of 5 positive cubes in exactly 2 ways.
157, 220, 227, 246, 253, 260, 267, 279, 283, 286, 305, 316, 323, 342, 344, 361, 368, 377, 379, 384, 403, 410, 435, 440, 442, 468, 475, 487, 494, 501, 523, 530, 531, 549, 562, 568, 586, 592, 594, 595, 599, 602, 621, 625, 640, 647, 657, 658, 683, 703, 710
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..15416 (terms < 10^8)
- Eric Weisstein's World of Mathematics, Cubic Number.
Crossrefs
Programs
-
Mathematica
Select[ Range[ 1000], (test = Length[ Select[ PowersRepresentations[#, 5, 3], And @@ (Positive /@ #)& ] ] == 2; If[test, Print[#]]; test)& ](* Jean-François Alcover, Nov 09 2012 *)
-
PARI
(waycount(n,numcubes,imax)={if(numcubes==0, !n, sum(i=1,imax, waycount(n-i^3,numcubes-1,i)))}); isA048927(n)=(waycount(n,5,floor(n^(1/3)))==2); \\ Michael B. Porter, Sep 27 2009
-
Python
def ways (n, left = 5, last = 1): a = last; a3 = a**3; c = 0 while a3 <= n-left+1: if left > 1: c += ways(n-a3, left-1, a) elif a3 == n: c += 1 a += 1; a3 = a**3 return c for n in range (1,1000): # to print this sequence if ways(n)==2: print(n,end=", ") # in Python2 use, e.g.: print n, # Minor edits by M. F. Hasler, Jan 04 2023
Extensions
More terms from Walter Hofmann (walterh(AT)gmx.de), Jun 01 2000
Comments