cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048966 A convolution triangle of numbers obtained from A025748.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 90, 39, 9, 1, 594, 270, 72, 12, 1, 4158, 1953, 567, 114, 15, 1, 30294, 14580, 4482, 1008, 165, 18, 1, 227205, 111456, 35721, 8667, 1620, 225, 21, 1, 1741905, 867834, 287199, 73656, 15075, 2430, 294, 24, 1, 13586859, 6857136, 2328183, 623106, 136323, 24354, 3465, 372, 27, 1
Offset: 1

Views

Author

Keywords

Comments

A generalization of the Catalan triangle A033184.

Examples

			Triangle begins:
     1;
     3,    1;
    15,    6,    1;
    90,   39,    9,    1;
   594,  270,   72,   12,    1;
  4158, 1953,  567,  114,   15,    1;
		

Crossrefs

Cf. A034000, A049213, A049223, A049224. a(n, 1)= A025748(n), a(n, 1)= 3^(n-1)*2*A034000(n-1)/n!, n >= 2. Row sums = A025756.

Programs

  • Haskell
    a048966 n k = a048966_tabl !! (n-1) !! (k-1)
    a048966_row n = a048966_tabl !! (n-1)
    a048966_tabl = [1] : f 2 [1] where
       f x xs = ys : f (x + 1) ys where
         ys = map (flip div x) $ zipWith (+)
              (map (* 3) $ zipWith (*) (map (3 * (x - 1) -) [1..]) (xs ++ [0]))
              (zipWith (*) [1..] ([0] ++ xs))
    -- Reinhard Zumkeller, Feb 19 2014
  • Mathematica
    a[n_, m_] /; n >= m >= 1 := a[n, m] = 3*(3*(n-1) - m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m := 0; a[n_, 0] = 0; a[1, 1] = 1; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 26 2011, after given formula *)

Formula

a(n, m) = 3*(3*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-9*x)^(1/3))/3)^m.
a(n,m) = m/n * sum(k=0..n-m, binomial(k,n-m-k) * 3^k*(-1)^(n-m-k) * binomial(n+k-1,n-1)). - Vladimir Kruchinin, Feb 08 2011