A048985 Working in base 2, replace n with the concatenation of its prime divisors in increasing order (write answer in base 10).
1, 2, 3, 10, 5, 11, 7, 42, 15, 21, 11, 43, 13, 23, 29, 170, 17, 47, 19, 85, 31, 43, 23, 171, 45, 45, 63, 87, 29, 93, 31, 682, 59, 81, 47, 175, 37, 83, 61, 341, 41, 95, 43, 171, 125, 87, 47, 683, 63, 173, 113, 173, 53, 191, 91, 343, 115, 93, 59, 349, 61, 95, 127, 2730
Offset: 1
Examples
15 = 3*5 -> 11.101 -> 11101 = 29, so a(15) = 29.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Patrick De Geest, Home Primes
Crossrefs
Programs
-
Haskell
-- import Data.List (unfoldr) a048985 = foldr (\d v -> 2 * v + d) 0 . concatMap (unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)) . reverse . a027746_row -- Reinhard Zumkeller, Jul 16 2012
-
Mathematica
f[n_] := FromDigits[ Flatten[ IntegerDigits[ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger@n], 2]], 2]; Array[f, 64] (* Robert G. Wilson v, Jun 02 2010 *)
-
Python
from sympy import factorint def a(n): if n == 1: return 1 return int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2) print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Oct 07 2022
Extensions
More terms from Sam Alexander (pink2001x(AT)hotmail.com) and Michel ten Voorde