cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049075 Eigensequence of a power series transformation.

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 43, 102, 247, 617, 1564, 4003, 10355, 27051, 71225, 188743, 503111, 1348301, 3630294, 9815159, 26637436, 72540432, 198162708, 542875096, 1491126550, 4105602719, 11329408543, 31328137525, 86795258650, 240898943969, 669730499207, 1864855943748
Offset: 1

Views

Author

Michael Somos, Aug 08 1999

Keywords

Comments

Euler transform of a(n) - if( n%4, 0, a(n/2)) is sequence itself with offset 0.

Examples

			x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 43*x^7 + 102*x^8 + 247*x^9 + 617*x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(n-> a(n) -`if`(modp(n,4)<>0, 0,a(n/2))): a:= n-> b(n-1): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 06 2008
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ](-1)^k ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ]
  • PARI
    {a(n) = local(A=x); if( n<1, 0, for( k=1, n-1, A *= (1 + (-x)^k + x*O(x^n))^((-1)^k * polcoeff(A, k))); polcoeff(A, n))}

Formula

G.f.: A(x) = x exp(A(x) - A(-x^2)/2 + A(x^3)/3 - A(-x^4)/4 + ...). Also A(x) = Sum_{n >= 1} a(n)*x^n = x * Product_{n >= 1} (1+(-x)^n)^((-1)^n*a(n)).
G.f.: x prod_{n>0} (1-x^(4n))^a(2n)/(1-x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = 2.92045137601697174071599643..., c = 0.4299447159290328896620383... . - Vaclav Kotesovec, Aug 25 2014