cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049086 Number of tilings of 4 X 3n rectangle by 1 X 3 rectangles. Rotations and reflections are considered distinct tilings.

Original entry on oeis.org

1, 3, 13, 57, 249, 1087, 4745, 20713, 90417, 394691, 1722917, 7520929, 32830585, 143313055, 625594449, 2730863665, 11920848033, 52037243619, 227154537661, 991581805481, 4328482658041, 18894822411423, 82480245888473, 360045244866137, 1571680309076689, 6860746056673507
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a[0]:=1:a[1]:=3:a[2]:=13: for n from 3 to 25 do a[n]:=5*a[n-1]-3*a[n-2]+a[n-3] od: seq(a[n],n=0..25); # Emeric Deutsch, Feb 15 2005
    a := n -> hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Dec 09 2020
  • Mathematica
    LinearRecurrence[{5,-3,1},{1,3,13},50] (* Vincenzo Librandi, Feb 18 2012 *)
    CoefficientList[Series[(1-x)^2/(1-5x+3x^2-x^3), {x, 0, 40}], x] (* M. Poyraz Torcuk, Nov 06 2021 *)

Formula

a(n) = 5*a(n-1) - 3*a(n-2) + a(n-3).
a(n)/a(n-1) tends to 4.3652300134..., an eigenvalue of the matrix M and an inverse root of the polynomial x^3 - 3x^2 + 5x - 1. [a(n-2), a(n-1), a(n)] = M^n * [1 1 1], where M = the 3 X 3 matrix [ 5 -3 1 / 1 0 0 / 0 1 0]. E.g., a(3), a(4), a(5) = 57, 249, 1087. M^5 * [1 1 1] = [57, 249, 1087] - Gary W. Adamson, Apr 25 2004
G.f.: (1-x)^2/(1-5*x+3*x^2-x^3). - Colin Barker, Feb 03 2012
a(n) = Sum_{k=0..n} A109955(n,k)*2^k. - Philippe Deléham, Feb 18 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27). - Peter Luschny, Dec 09 2020

Extensions

More terms from Emeric Deutsch, Feb 15 2005