cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A046984 Number of ways to tile a 4 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 4, 18, 88, 468, 2672, 16072, 100064, 636368, 4097984, 26579488, 173093760, 1129796928, 7383588608, 48287978624, 315921649152, 2067346607360, 13530037877760, 88555066819072, 579620448450560, 3793872862974976, 24832858496561152, 162544900186359808
Offset: 0

Views

Author

Cristopher Moore (moore(AT)santafe.edu)

Keywords

Comments

The sequence of tiling 2 X 3n rectangles with L-trominoes is 2^n. The sequence of tiling 3 X 2n rectangles is 2^n. All these tilings have vertical faults but no horizontal faults. - R. J. Mathar, Dec 08 2022
This sequence is the Hadamard sum of the following 4 sequences: 0, 0, 16, 64, 256, 1024, 4096... (A000302, tilings which have both vertical and horizontal faults), 0, 4, 0, 0, 0, 0, 0, ...(tilings which have horizontal but no vertical faults), 0, 0, 0, 16, 164, 1360, 10248, 73312, 508624, 3462592, 23291424.. (tilings which have vertical but no horizontal faults), 1, 0, 2, 8, 48, 288, 1728, 10368,.. (essentially A084477, tilings which have neither vertical nor horizontal faults). - R. J. Mathar, Dec 08 2022

References

  • Suggested on p. 96 of 1994 edition of "Polyominoes" by Samuel W. Golomb.

Crossrefs

Cf. A084478 (5 X 3n), A351323 (6 X n), A351324 (7 X 3n), A049086 (straight trominoes), A233339 (mixed trominoes).

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-4|-22|10>>^n. <<1, 4, 18>>)[1, 1]:
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 21 2022
  • Mathematica
    CoefficientList[Series[(1-6x)/(1-10x+22x^2+4x^3),{x,0,40}],x] (* or *) LinearRecurrence[{10,-22,-4},{1,4,18},40] (* Harvey P. Dale, Mar 31 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -4,-22,10]^n*[1;4;18])[1,1] \\ Charles R Greathouse IV, Feb 10 2017

Formula

G.f.: (1 - 6*x)/(1 - 10*x + 22*x^2 + 4*x^3).
a(0)=1, a(1)=4, a(2)=18, a(n)=10*a(n-1)-22*a(n-2)-4*a(n-3). - Harvey P. Dale, Mar 31 2012

A200676 Expansion of g.f. -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1).

Original entry on oeis.org

1, 0, 0, 1, 5, 22, 96, 419, 1829, 7984, 34852, 152137, 664113, 2899006, 12654828, 55241235, 241140697, 1052634608, 4594992184, 20058197793, 87558647021, 382213633910, 1668450426280, 7283169876691, 31792711738525, 138782499488832, 605817532105276
Offset: 0

Views

Author

Alois P. Heinz, Nov 21 2011

Keywords

Comments

Peter A. Lawrence (see links) has posted a challenge to find a 3x3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found.
The sequence without the first 3 entries (1, 5, 22, 96,...) are the partial sums of the partial sums of A049086. - R. J. Mathar, Jul 20 2025

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-3|5>>^n)[1, 1]:
    seq(a(n), n=0..30);
  • Mathematica
    CoefficientList[Series[-(3 x^2 - 5 x + 1)/(x^3 - 3 x^2 + 5 x - 1), {x, 0, 26}], x] (* Michael De Vlieger, Sep 04 2018 *)
    LinearRecurrence[{5,-3,1},{1,0,0},40] (* Harvey P. Dale, Aug 18 2021 *)

Formula

G.f.: -(3*x^2-5*x+1)/(x^3-3*x^2+5*x-1).
Term (1,1) in the 3x3 matrix [0,1,0; 0,0,1; 1,-3,5]^n.

A236576 The number of tilings of a 5 X (3n) floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 4, 22, 121, 664, 3643, 19987, 109657, 601624, 3300760, 18109345, 99355414, 545105209, 2990674357, 16408085929, 90021597712, 493896002842, 2709719309845, 14866649448256, 81564634762843, 447497579542135
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3 X n floor), A049086 (4 X 3n floor), A236577, A236578.

Programs

  • Maple
    g := (1-x)^2/(1-6*x+3*x^2-x^3) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;
  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - 6 x + 3 x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Apr 29 2017 *)
    LinearRecurrence[{6, -3, 1}, {1, 4, 22}, 30] (* M. Poyraz Torcuk, Nov 06 2021 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x)^2/(1-6*x+3*x^2-x^3)) \\ G. C. Greubel, Apr 29 2017

Formula

G.f.: (1-x)^2/(1-6*x+3*x^2-x^3).
a(n) = 6*a(n-1) - 3*a(n-2) + a(n-3). - M. Poyraz Torcuk, Oct 24 2021

A236577 The number of tilings of a 6 X n floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576 - A236578.
Column k=3 of A250662.
Cf. A251073.

Programs

  • Maple
    g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;
  • Mathematica
    CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017

Formula

G.f.: See the definition of g in the Maple code.

A109955 Number triangle binomial(n+2k,3k).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 7, 1, 1, 20, 28, 10, 1, 1, 35, 84, 55, 13, 1, 1, 56, 210, 220, 91, 16, 1, 1, 84, 462, 715, 455, 136, 19, 1, 1, 120, 924, 2002, 1820, 816, 190, 22, 1, 1, 165, 1716, 5005, 6188, 3876, 1330, 253, 25, 1, 1, 220, 3003, 11440, 18564, 15504, 7315, 2024
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Riordan array (1/(1-x),x/(1-x)^3).
Inverse array is A109956. Row sums are A052544.
Diagonal sums are A034943(n+1).

Examples

			Rows begin
1;
1,1;
1,4,1;
1,10,7,1;
1,20,28,10,1;
1,35,84,55,13,1;
		

Programs

  • PARI
    tabl(nn) = {my(m = matrix(nn, nn, n, k, if (nMichel Marcus, Nov 20 2015

Formula

Number triangle T(n, k) = binomial(n+2k, 3k).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k) + T(n-1,k-1). - Philippe Deléham, Feb 18 2012
G.f.: (1-x)^2/((1-x)^3-y*x). - Philippe Deléham, Feb 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A185963(n), A000012(n), A052544(n), A049086(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Feb 18 2012

A236578 The number of tilings of a 7 X (3n) floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 9, 155, 2861, 52817, 972557, 17892281, 329097125, 6052932495, 111328274273, 2047599783121, 37660384283749, 692666924307063, 12739845501187821, 234317040993180833, 4309665744385061493, 79265335342431559977
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576, A236577.

Programs

  • Maple
    p := (x-1)^2*(-x^15 +14*x^14 -104*x^13 +527*x^12 -1971*x^11 +5573*x^10 -11973*x^9 +19465*x^8 -23695*x^7 +21166*x^6 -13512*x^5 +5915*x^4 -1685*x^3 +291*x^2 -27*x+1) ;
    q := -17*x^17 +293180*x^8 -236178*x^7 +142400*x^6 -62621*x^5 +19420*x^4 -4062*x^3 +533*x^2 -38*x +x^18 +1 +151*x^16 -946*x^15 +4558*x^14 -17135*x^13 +50164*x^12 -114198*x^11 +202080*x^10 -277277*x^9 ;
    taylor(p/q,x=0,30) ;
    gfun[seriestolist](%) ;

Formula

G.f.: p(x)/q(x) with polynomials p and q defined in the Maple code.
Showing 1-6 of 6 results.