cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236576 The number of tilings of a 5 X (3n) floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 4, 22, 121, 664, 3643, 19987, 109657, 601624, 3300760, 18109345, 99355414, 545105209, 2990674357, 16408085929, 90021597712, 493896002842, 2709719309845, 14866649448256, 81564634762843, 447497579542135
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3 X n floor), A049086 (4 X 3n floor), A236577, A236578.

Programs

  • Maple
    g := (1-x)^2/(1-6*x+3*x^2-x^3) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;
  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - 6 x + 3 x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Apr 29 2017 *)
    LinearRecurrence[{6, -3, 1}, {1, 4, 22}, 30] (* M. Poyraz Torcuk, Nov 06 2021 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x)^2/(1-6*x+3*x^2-x^3)) \\ G. C. Greubel, Apr 29 2017

Formula

G.f.: (1-x)^2/(1-6*x+3*x^2-x^3).
a(n) = 6*a(n-1) - 3*a(n-2) + a(n-3). - M. Poyraz Torcuk, Oct 24 2021

A236577 The number of tilings of a 6 X n floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576 - A236578.
Column k=3 of A250662.
Cf. A251073.

Programs

  • Maple
    g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;
  • Mathematica
    CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017

Formula

G.f.: See the definition of g in the Maple code.

A351324 Number of tilings of a 7 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 0, 520, 22656, 1795360, 115363072, 7876120608, 527256809600, 35522814546496, 2388257605782016, 160678147466414272, 10807663334085120512, 727010169682181839360, 48903265220016072792320, 3289569236212332037229184, 221278350342281369716796672
Offset: 0

Views

Author

Gerhard Kirchner, Feb 21 2022

Keywords

Comments

See A351322 for algorithm.
This is the Hadamard sum of the following 4 sequences: 0, 0,0,0, 158208,.. (tilings which have both vertical and horizontal faults), 0,0,480,6144, 125952 ... (tilings which have horizontal faults but no vertical faults), 00,0,0,112192,.. (tilings which have vertical but no horizontal faults), 1, 0,40, 16512, 1399008 ,... (tilings which have neither horizontal nor vertical faults). - R. J. Mathar, Dec 08 2022

Crossrefs

Cf. A077957, A000079, A046984, A084478, A351322, A351323, A236578 (straight trominoes), A233343 (mixed trominoes).

Formula

G.f.: (1 - 22*x - 1831*x^2 - 29454*x^3 - 270630*x^4 - 2070388*x^5 - 12125943*x^6 - 48147976*x^7 - 151548064*x^8 - 417242784*x^9 - 423562924*x^10 + 586224672*x^11 + 915719344*x^12 + 349980800*x^13 + 371621248*x^14 - 6541312*x^15 - 9691136*x^16 + 589824*x^17)/(1 - 22*x - 2351*x^2 - 40670*x^3 - 345038*x^4 - 3522884*x^5 - 28528327*x^6 - 145350120*x^7 - 623982088*x^8 - 2110011040*x^9 - 1354478796*x^10 + 9281598624*x^11 + 15001687984*x^12 + 3456230016*x^13 - 3194643904*x^14 - 1637793792*x^15 - 575934464*x^16 + 65175552*x^17).
a(n) = 22*a(n-1) + 2351*a(n-2) + 40670*a(n-3) + 345038*a(n-4) + 3522884*a(n-5) + 28528327*a(n-6) + 145350120*a(n-7) + 623982088*a(n-8) + 2110011040*a(n-9) + 1354478796*a(n-10) - 9281598624*a(n-11) - 15001687984*a(n-12) - 3456230016*a(n-13) + 3194643904*a(n-14) + 1637793792*a(n-15) + 575934464*a(n-16) - 65175552*a(n-17) for n>16.
Showing 1-3 of 3 results.