A084478
Number of tilings of a 5 X 3n rectangle with right trominoes.
Original entry on oeis.org
1, 0, 72, 384, 8544, 76800, 1168512, 12785664, 170678784, 2014648320, 25633231872, 311423852544, 3892030055424, 47803588208640, 593425578949632, 7318730222874624, 90624271197041664, 1119402280975349760, 13847850677651745792, 171150049715628539904
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..900
- D. Merlini, R. Sprugnoli, M. C. Verri, Strip tiling and regular grammars, Theo. Comp. Sci. 242 (1-2) (2000) 109-124, Proof of Theorem 4.2 (typo t^5 in the denominator of g.f. ought be t^6)
- C. Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (2,103,280,380).
-
LinearRecurrence[{2, 103, 280, 380}, {72, 384, 8544, 76800}, 20] (* Jean-François Alcover, Jan 07 2019 *)
-
Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 103*x^2 - 280*x^3 - 380*x^4) + O(x^30)) \\ Colin Barker, Mar 27 2017
A236577
The number of tilings of a 6 X n floor with 1 X 3 trominoes.
Original entry on oeis.org
1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 21.
- R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], 2014, eq (14).
- Index entries for linear recurrences with constant coefficients, signature (1,1,7,-1,-5,-10,-1,3,5,1,-1,-1).
-
g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ;
taylor(%,x=0,30) ;
gfun[seriestolist](%) ;
-
CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
-
x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017
A236578
The number of tilings of a 7 X (3n) floor with 1 X 3 trominoes.
Original entry on oeis.org
1, 9, 155, 2861, 52817, 972557, 17892281, 329097125, 6052932495, 111328274273, 2047599783121, 37660384283749, 692666924307063, 12739845501187821, 234317040993180833, 4309665744385061493, 79265335342431559977
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..785
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 22.
- R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], 2014, eq. (15).
-
p := (x-1)^2*(-x^15 +14*x^14 -104*x^13 +527*x^12 -1971*x^11 +5573*x^10 -11973*x^9 +19465*x^8 -23695*x^7 +21166*x^6 -13512*x^5 +5915*x^4 -1685*x^3 +291*x^2 -27*x+1) ;
q := -17*x^17 +293180*x^8 -236178*x^7 +142400*x^6 -62621*x^5 +19420*x^4 -4062*x^3 +533*x^2 -38*x +x^18 +1 +151*x^16 -946*x^15 +4558*x^14 -17135*x^13 +50164*x^12 -114198*x^11 +202080*x^10 -277277*x^9 ;
taylor(p/q,x=0,30) ;
gfun[seriestolist](%) ;
A351323
Number of tilings of a 6 X n rectangle with right trominoes.
Original entry on oeis.org
1, 0, 4, 8, 18, 72, 162, 520, 1514, 4312, 13242, 39088, 118586, 361712, 1103946, 3403624, 10513130, 32614696, 101530170, 316770752, 990771834, 3104283168, 9741133578, 30606719000, 96263812906, 303028237848, 954563802106, 3008665176560, 9487377712634, 29928407213328
Offset: 0
For a 6 X 2 rectangle there are 4 tilings:
___ ___ ___ ___
| _| | _| |_ | |_ |
|_| | |_| | | |_| | |_|
|___| |___| |___| |___|
| _| |_ | | _| |_ |
|_| | | |_| |_| | | |_|
|___| |___| |___| |___|
- Index entries for linear recurrences with constant coefficients, signature (2,8,2,-43,-42,36,102,0,-44,-8,-8).
Showing 1-4 of 4 results.
Comments