cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084478 Number of tilings of a 5 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 0, 72, 384, 8544, 76800, 1168512, 12785664, 170678784, 2014648320, 25633231872, 311423852544, 3892030055424, 47803588208640, 593425578949632, 7318730222874624, 90624271197041664, 1119402280975349760, 13847850677651745792, 171150049715628539904
Offset: 0

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A right tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
There is a sign typo with respect to the g.f. in the paper.
The sequence is the Hadamard sum of the following 4 sequences: 0, 0, 0, 0, 2048, 0, 65536, 0,.. (tilings which have both vertical and horizontal faults), 0, 0, 64, 0, 0, 0, 0, 0.. (tilings which have horizontal but no vertical faults), 0, 0, 0, 0, 3136, 55296, 939008, 11649024... (tilings which have vertical faults but no horizontal faults), .. 1, 0, 8, 384, 3360, 21504, 163968 (essentially A084479) which have neither vertical nor horizontal faults. - R. J. Mathar, Dec 08 2022

Crossrefs

Cf. A046984, A084477, A084479 (INVERT transform), A084480, A084481,A351323, A351324, A236576 (straight trominoes), A233340 (mixed trominoes).

Programs

  • Mathematica
    LinearRecurrence[{2, 103, 280, 380}, {72, 384, 8544, 76800}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 103*x^2 - 280*x^3 - 380*x^4) + O(x^30)) \\ Colin Barker, Mar 27 2017

Formula

G.f.: (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4) / (1 - 2*z - 103*z^2 - 280*z^3 - 380*z^4).
a(n) = 2*a(n-1) + 103*a(n-2) + 280*a(n-3) + 380*a(n-4) for n > 4. - Colin Barker, Mar 27 2017

Extensions

a(0) and a(1) prepended by Alois P. Heinz, Feb 21 2022

A236577 The number of tilings of a 6 X n floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576 - A236578.
Column k=3 of A250662.
Cf. A251073.

Programs

  • Maple
    g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;
  • Mathematica
    CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017

Formula

G.f.: See the definition of g in the Maple code.

A236578 The number of tilings of a 7 X (3n) floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 9, 155, 2861, 52817, 972557, 17892281, 329097125, 6052932495, 111328274273, 2047599783121, 37660384283749, 692666924307063, 12739845501187821, 234317040993180833, 4309665744385061493, 79265335342431559977
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576, A236577.

Programs

  • Maple
    p := (x-1)^2*(-x^15 +14*x^14 -104*x^13 +527*x^12 -1971*x^11 +5573*x^10 -11973*x^9 +19465*x^8 -23695*x^7 +21166*x^6 -13512*x^5 +5915*x^4 -1685*x^3 +291*x^2 -27*x+1) ;
    q := -17*x^17 +293180*x^8 -236178*x^7 +142400*x^6 -62621*x^5 +19420*x^4 -4062*x^3 +533*x^2 -38*x +x^18 +1 +151*x^16 -946*x^15 +4558*x^14 -17135*x^13 +50164*x^12 -114198*x^11 +202080*x^10 -277277*x^9 ;
    taylor(p/q,x=0,30) ;
    gfun[seriestolist](%) ;

Formula

G.f.: p(x)/q(x) with polynomials p and q defined in the Maple code.

A351323 Number of tilings of a 6 X n rectangle with right trominoes.

Original entry on oeis.org

1, 0, 4, 8, 18, 72, 162, 520, 1514, 4312, 13242, 39088, 118586, 361712, 1103946, 3403624, 10513130, 32614696, 101530170, 316770752, 990771834, 3104283168, 9741133578, 30606719000, 96263812906, 303028237848, 954563802106, 3008665176560, 9487377712634, 29928407213328
Offset: 0

Views

Author

Gerhard Kirchner, Feb 21 2022

Keywords

Comments

See A351322 for algorithm. The subsequence 1,8,162,... for 6 X 3n rectangles also has a depending recurrence with 11 parameters.
The sequence is the Hadamard sum of the following 4 sequences: 0, 0, 0, 0, 16, 0, 128, 0, 256, 768, 1024,0, 13440, 0, 16384, .. (tilings which have both horizontal and vertical faults), 0, 0, 4, 8, 0, 0, 16, 0, 0, 128, 0, 0, 1536, 0, 0,.. (tilings which have horizontal faults but no vertical faults), 0, 0, 0, 0, 0, 64, 16, 480, 1140, 3200, 11208, 36032, 95924, 333856, 1003096,.. (tilings which have vertical faults but no horizontal faults), 1, 0, 0, 0, 2, 8, 2, 40, 118, 216, 1010, 3056, 7686, 27856, 84466,... (tilings which have neither vertical nor horizontal faults). - R. J. Mathar, Dec 08 2022

Examples

			For a 6 X 2 rectangle there are 4 tilings:
   ___   ___   ___   ___
  |  _| |  _| |_  | |_  |
  |_| | |_| | | |_| | |_|
  |___| |___| |___| |___|
  |  _| |_  | |  _| |_  |
  |_| | | |_| |_| | | |_|
  |___| |___| |___| |___|
		

Crossrefs

Cf. A077957, A000079, A046984, A084478, A351322, A351324, A236576 (straight trominoes), A233290 (mixed trominoes).

Formula

G.f.: (1 - x)*(1 - x - 5*x^2 - 7*x^3 + 6*x^4 + 12*x^5 + 6*x^6)/(1 - 2*x - 8*x^2 - 2*x^3 + 43*x^4 + 42*x^5 - 36*x^6 - 102*x^7 + 44*x^9 + 8*x^10 + 8*x^11).
a(n) = Sum_{i=0..10} b(i)*a(n-11+i) for n>10 where {b(i)} = {-8,-8,-44,0,102,36,-42,-43,2,8,2}.
Showing 1-4 of 4 results.