cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A200739 Expansion of (-x^2+5*x-1)/(x^3-x^2+5*x-1).

Original entry on oeis.org

1, 0, 0, 1, 5, 24, 116, 561, 2713, 13120, 63448, 306833, 1483837, 7175800, 34701996, 167818017, 811563889, 3924703424, 18979771248, 91785716705, 443873515701, 2146561633048, 10380720366244, 50200913713873, 242770409836169, 1174031855833216, 5677589783043784
Offset: 0

Views

Author

Alois P. Heinz, Nov 21 2011

Keywords

Comments

Peter A. Lawrence (see links) has posted a challenge to find a 3x3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found.

Crossrefs

Cf. A200676.

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-1|5>>^n)[1, 1]:
    seq(a(n), n=0..30);
  • Mathematica
    CoefficientList[Series[(-x^2 + 5 x - 1)/(x^3 - x^2 + 5 x - 1), {x, 0, 30}], x] (* or *) LinearRecurrence[{5,-1,1},{1,0,0},30] (* Harvey P. Dale, Nov 26 2017 *)

Formula

G.f.: (-x^2+5*x-1)/(x^3-x^2+5*x-1).
Term (1,1) in the 3x3 matrix [0,1,0; 0,0,1; 1,-1,5]^n.

A361358 Expansion of x*(2 - x)/(1 - 5*x + 3*x^2 - x^3).

Original entry on oeis.org

2, 9, 39, 170, 742, 3239, 14139, 61720, 269422, 1176089, 5133899, 22410650, 97827642, 427040159, 1864128519, 8137349760, 35521403402, 155059096249, 676868620799, 2954687218650, 12897889327102, 56302253600359, 245772287239139, 1072852564721720
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Comments

This sequence arises in the enumeration of noncrossing caterpillar graphs (A361356). Given a directed edge (A,B) on the spine of the caterpillar where B is not a leaf node, then a(n) is the number of ways to complete the caterpillar using at most n nodes. Nodes cannot be added to A. Equivalently, a(n) is the number of ways to complete the caterpillar using exactly n nodes allowing leaves to be added to the left of A (but not to the right).

Examples

			In the following examples, o is a leaf and 1..n+1 is the spine.
a(1) = 2, a leaf can be added to the left or to the right of the spine:
   1---2    1  o
       |     \ |
       o       2
.
a(2) = a(1) + 7:
   1---2   1---2    1---2    1   o    1   3    1   o   1   o
     /         |      / |      \ |    | / |    |   |   | /
   3---o   o---3    o   o    o---2    2   o    2---3   2---o
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -3, 1}, {2, 9, 39}, 30] (* Paolo Xausa, Jul 20 2024 *)
  • PARI
    Vec(x*(2 - x)/(1 - 5*x + 3*x^2 - x^3) + O(x^25))

Formula

a(n) = 5*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
a(n) = 2*A200676(n+2) - A200676(n+1).
G.f. A(x) satisfies A(x) = x*(2 - x + 2*A(x))/(1 - x)^3.

A200752 Expansion of (-x^2 + 3*x - 1)/(x^3 - x^2 + 3*x - 1).

Original entry on oeis.org

1, 0, 0, 1, 3, 8, 22, 61, 169, 468, 1296, 3589, 9939, 27524, 76222, 211081, 584545, 1618776, 4482864, 12414361, 34378995, 95205488, 263651830, 730128997, 2021940649, 5599344780, 15506222688, 42941263933, 118916913891, 329315700428, 911971451326, 2525515567441
Offset: 0

Views

Author

Alois P. Heinz, Nov 21 2011

Keywords

Comments

Peter A. Lawrence (see links) has posted a challenge to find a 3x3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found.
a(n+3) is the number of ternary strings of length n in which the number of substrings of the form 0011 equals the number of substrings of the form 11. - John M. Campbell, Nov 02 2013

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-1|3>>^n)[1, 1]:
    seq(a(n), n=0..50);

Formula

G.f.: (-x^2+3*x-1)/(x^3-x^2+3*x-1).
Term (1,1) in the 3x3 matrix [0,1,0; 0,0,1; 1,-1,3]^n.
a(n) = 3*a(n-1) -a(n-2) +a(n-3) with a(0)=1, a(1)=0, a(2)=0. - Taras Goy, Jul 23 2017

A200715 Expansion of (-3*x^2 + x - 1)/(x^3 - 3*x^2 + x - 1).

Original entry on oeis.org

1, 0, 0, 1, 1, -2, -4, 3, 13, 0, -36, -23, 85, 118, -160, -429, 169, 1296, 360, -3359, -3143, 7294, 13364, -11661, -44459, 3888, 125604, 69481, -303443, -386282, 593528, 1448931, -717935, -4471200, -868464, 11827201, 9961393, -26388674, -44445652, 44681763
Offset: 0

Views

Author

Alois P. Heinz, Nov 21 2011

Keywords

Comments

Peter A. Lawrence (see links) has posted a challenge to find a 3 X 3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found.
|a(n)| is a prime number for n in {5, 7, 8, 11, 19, 27, 108, 276, 371, 608, ...} with values {2, 3, 13, 23, 3359, 69481, 167527749243856707416101, ...}.

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-3|1>>^n)[1, 1]:
    seq(a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[(-3x^2+x-1)/(x^3-3x^2+x-1),{x,0,40}],x] (* or *) LinearRecurrence[{1,-3,1},{1,0,0},40] (* Harvey P. Dale, Nov 22 2011 *)
  • PARI
    Vec((-3*x^2+x-1)/(x^3-3*x^2+x-1)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011

Formula

G.f.: (-3*x^2 + x - 1)/(x^3 - 3*x^2 + x - 1).
Term (1,1) in the 3 X 3 matrix [0,1,0; 0,0,1; 1,-3,1]^n.
a(n) = a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=a(2)=0. - Harvey P. Dale, Nov 22 2011
Showing 1-4 of 4 results.