cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A202207 a(n) = 3*a(n-1) - a(n-2) + a(n-3) with a(0)=1, a(1)=2, a(2)=5.

Original entry on oeis.org

1, 2, 5, 14, 39, 108, 299, 828, 2293, 6350, 17585, 48698, 134859, 373464, 1034231, 2864088, 7931497, 21964634, 60826493, 168446342, 466477167, 1291811652, 3577404131, 9906877908, 27435041245, 75975649958, 210398786537
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2011

Keywords

Crossrefs

Cf. A200752.

Programs

  • PARI
    my(x='x+O('x^40)); Vec((1-x)/(1-3*x+x^2-x^3)) \\ Michel Marcus, Apr 10 2024

Formula

G.f.: (1-x)/(1-3*x+x^2-x^3).
a(n) = A200752(n+3) - A200752(n+2). - R. J. Mathar, Dec 15 2011

A289666 a(n) = number of weakly threshold graphs on n nodes.

Original entry on oeis.org

0, 1, 2, 4, 9, 21, 52, 134, 355, 957, 2608, 7154, 19701, 54379, 150302, 415762, 1150609, 3185147, 8818620, 24418128, 67615743, 187239359, 518506932, 1435875288, 3976322869, 11011542937, 30494088494, 84446895364, 233857897749, 647620493541
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2017

Keywords

Programs

  • Mathematica
    a = DifferenceRoot[Function[{a, n}, {a[n] + a[n+2] + 3a[n+3] - 4a[n+4] + a[n+5] == 0, a[0]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==9, a[5]==21}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 09 2019 *)
    LinearRecurrence[{4,-3,-1,0,-1},{0,1,2,4,9,21},30] (* Harvey P. Dale, Sep 15 2024 *)
  • PARI
    concat(0, Vec(x*(1 - 2*x - x^2 - x^4) / ((1 - x - x^2)*(1 - 3*x + x^2 - x^3)) + O(x^30))) \\ Colin Barker, Jul 26 2017

Formula

G.f.: -(x^4+x^2+2*x-1)*x/((x^2+x-1)*(x^3-x^2+3*x-1)).
a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3) - a(n-5) for n>5. - Colin Barker, Jul 26 2017
3*a(n) = 2*A000045(n+1) + A200752(n+3) -2*A200752(n+2), n>0. - R. J. Mathar, Aug 05 2017
Showing 1-2 of 2 results.