A361356
Number of noncrossing caterpillars with n edges.
Original entry on oeis.org
1, 1, 3, 12, 55, 273, 1372, 6824, 33489, 162405, 779801, 3713436, 17560803, 82553597, 386105790, 1797803248, 8338313697, 38539754649, 177581276639, 815982230060, 3740047627071, 17103604731961, 78054858200448, 355541644914072, 1616688603539025
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Caterpillar Graph.
- Wikipedia, Caterpillar tree.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,104,-114,76,-32,8,-1).
A361359
Number of nonequivalent noncrossing caterpillars with n edges up to rotation.
Original entry on oeis.org
1, 1, 1, 4, 11, 49, 196, 868, 3721, 16306, 70891, 309739, 1350831, 5897934, 25740386, 112368153, 490489041, 2141121271, 9346382981, 40799215354, 178097506051, 777437032059, 3393689486976, 14814237183658, 64667544141561, 282288713218896, 1232255125682671
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,-3,-26,36,-2,-18,6,5,-4,1).
-
G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x + x*subst((1 + 2*x*f)/(1-x)^2, x, x^2)/2 }
{ Vec(G(x) + O(x^30)) }
A361360
Number of nonequivalent noncrossing caterpillars with n edges up to rotation and relection.
Original entry on oeis.org
1, 1, 1, 3, 7, 28, 104, 448, 1886, 8212, 35556, 155124, 675897, 2950074, 12872294, 56188904, 245253691, 1070581703, 4673231521, 20399699635, 89048927767, 388718917440, 1696845506274, 7407120344070, 32333775400516, 141144364258374, 616127577376396
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,4,-34,7,63,-30,-46,31,13,-14,0,3,-1).
-
G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x/2 + x*subst((3 + 2*x*(3-x)*f)/(1-x)^2, x, x^2)/4 + subst(1/(1-x) + x*f/(1-x), x, x^2)/2}
{ Vec(G(x) + O(x^30)) }
Showing 1-3 of 3 results.
Comments