A361358
Expansion of x*(2 - x)/(1 - 5*x + 3*x^2 - x^3).
Original entry on oeis.org
2, 9, 39, 170, 742, 3239, 14139, 61720, 269422, 1176089, 5133899, 22410650, 97827642, 427040159, 1864128519, 8137349760, 35521403402, 155059096249, 676868620799, 2954687218650, 12897889327102, 56302253600359, 245772287239139, 1072852564721720
Offset: 1
In the following examples, o is a leaf and 1..n+1 is the spine.
a(1) = 2, a leaf can be added to the left or to the right of the spine:
1---2 1 o
| \ |
o 2
.
a(2) = a(1) + 7:
1---2 1---2 1---2 1 o 1 3 1 o 1 o
/ | / | \ | | / | | | | /
3---o o---3 o o o---2 2 o 2---3 2---o
-
LinearRecurrence[{5, -3, 1}, {2, 9, 39}, 30] (* Paolo Xausa, Jul 20 2024 *)
-
Vec(x*(2 - x)/(1 - 5*x + 3*x^2 - x^3) + O(x^25))
A361359
Number of nonequivalent noncrossing caterpillars with n edges up to rotation.
Original entry on oeis.org
1, 1, 1, 4, 11, 49, 196, 868, 3721, 16306, 70891, 309739, 1350831, 5897934, 25740386, 112368153, 490489041, 2141121271, 9346382981, 40799215354, 178097506051, 777437032059, 3393689486976, 14814237183658, 64667544141561, 282288713218896, 1232255125682671
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,-3,-26,36,-2,-18,6,5,-4,1).
-
G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x + x*subst((1 + 2*x*f)/(1-x)^2, x, x^2)/2 }
{ Vec(G(x) + O(x^30)) }
A361360
Number of nonequivalent noncrossing caterpillars with n edges up to rotation and relection.
Original entry on oeis.org
1, 1, 1, 3, 7, 28, 104, 448, 1886, 8212, 35556, 155124, 675897, 2950074, 12872294, 56188904, 245253691, 1070581703, 4673231521, 20399699635, 89048927767, 388718917440, 1696845506274, 7407120344070, 32333775400516, 141144364258374, 616127577376396
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,4,-34,7,63,-30,-46,31,13,-14,0,3,-1).
-
G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x/2 + x*subst((3 + 2*x*(3-x)*f)/(1-x)^2, x, x^2)/4 + subst(1/(1-x) + x*f/(1-x), x, x^2)/2}
{ Vec(G(x) + O(x^30)) }
A361357
Triangle read by rows: T(n,k) is the number of noncrossing caterpillars with n edges and diameter k, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 0, 0, 4, 8, 0, 0, 5, 30, 20, 0, 0, 6, 75, 144, 48, 0, 0, 7, 154, 595, 504, 112, 0, 0, 8, 280, 1848, 2896, 1536, 256, 0, 0, 9, 468, 4788, 12060, 11268, 4320, 576, 0, 0, 10, 735, 10920, 40700, 58760, 38480, 11520, 1280
Offset: 0
Triangle begins:
1;
0, 1;
0, 0, 3;
0, 0, 4, 8;
0, 0, 5, 30, 20;
0, 0, 6, 75, 144, 48;
0, 0, 7, 154, 595, 504, 112;
0, 0, 8, 280, 1848, 2896, 1536, 256;
0, 0, 9, 468, 4788, 12060, 11268, 4320, 576;
0, 0, 10, 735, 10920, 40700, 58760, 38480, 11520, 1280;
...
-
T(n) = {my(f=x*y*(2 - x)/(1 - (3 + 2*y)*x + 3*x^2 - x^3), g = 1 + x*y + (x*y)^2*((3 - 2*x) + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); [Vecrev(p) | p<-Vec(g + O(x*x^n))]}
{ my(A=T(9)); for(i=1, #A, print(A[i])) }
Showing 1-4 of 4 results.
Comments