A361356
Number of noncrossing caterpillars with n edges.
Original entry on oeis.org
1, 1, 3, 12, 55, 273, 1372, 6824, 33489, 162405, 779801, 3713436, 17560803, 82553597, 386105790, 1797803248, 8338313697, 38539754649, 177581276639, 815982230060, 3740047627071, 17103604731961, 78054858200448, 355541644914072, 1616688603539025
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Caterpillar Graph.
- Wikipedia, Caterpillar tree.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,104,-114,76,-32,8,-1).
A361358
Expansion of x*(2 - x)/(1 - 5*x + 3*x^2 - x^3).
Original entry on oeis.org
2, 9, 39, 170, 742, 3239, 14139, 61720, 269422, 1176089, 5133899, 22410650, 97827642, 427040159, 1864128519, 8137349760, 35521403402, 155059096249, 676868620799, 2954687218650, 12897889327102, 56302253600359, 245772287239139, 1072852564721720
Offset: 1
In the following examples, o is a leaf and 1..n+1 is the spine.
a(1) = 2, a leaf can be added to the left or to the right of the spine:
1---2 1 o
| \ |
o 2
.
a(2) = a(1) + 7:
1---2 1---2 1---2 1 o 1 3 1 o 1 o
/ | / | \ | | / | | | | /
3---o o---3 o o o---2 2 o 2---3 2---o
-
LinearRecurrence[{5, -3, 1}, {2, 9, 39}, 30] (* Paolo Xausa, Jul 20 2024 *)
-
Vec(x*(2 - x)/(1 - 5*x + 3*x^2 - x^3) + O(x^25))
A361360
Number of nonequivalent noncrossing caterpillars with n edges up to rotation and relection.
Original entry on oeis.org
1, 1, 1, 3, 7, 28, 104, 448, 1886, 8212, 35556, 155124, 675897, 2950074, 12872294, 56188904, 245253691, 1070581703, 4673231521, 20399699635, 89048927767, 388718917440, 1696845506274, 7407120344070, 32333775400516, 141144364258374, 616127577376396
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,4,-34,7,63,-30,-46,31,13,-14,0,3,-1).
-
G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x/2 + x*subst((3 + 2*x*(3-x)*f)/(1-x)^2, x, x^2)/4 + subst(1/(1-x) + x*f/(1-x), x, x^2)/2}
{ Vec(G(x) + O(x^30)) }
Showing 1-3 of 3 results.
Comments