cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A109956 Inverse of Riordan array (1/(1-x), x/(1-x)^3), A109955.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -12, 18, -7, 1, 55, -88, 42, -10, 1, -273, 455, -245, 75, -13, 1, 1428, -2448, 1428, -510, 117, -16, 1, -7752, 13566, -8379, 3325, -910, 168, -19, 1, 43263, -76912, 49588, -21252, 6578, -1472, 228, -22, 1, -246675, 444015, -296010, 134550, -45630, 11700, -2223, 297, -25, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Riordan array (g,f) where f/(1-f)^3=x and g=1-f.
First column is (-1)^n*binomial(3n,n)/(2n+1), a signed version of A001764.
Second column is a signed version of A006629.
Diagonal sums are A109957.

Examples

			Triangle begins:
      1;
     -1,   1;
      3,  -4,    1;
    -12,  18,   -7,   1;
     55, -88,   42, -10,   1;
   -273, 455, -245,  75, -13, 1;
   ...
		

Crossrefs

Programs

  • Maple
    # Function RiordanSquare defined in A321620.
    tt := sin(arcsin(3*sqrt(x*3/4))/3)/sqrt(x*3/4): R := RiordanSquare(tt, 11):
    seq(seq(LinearAlgebra:-Row(R,n)[k]*(-1)^(n+k), k=1..n), n=1..11); # Peter Luschny, Nov 27 2018
  • Mathematica
    T[n_, k_] := (-1)^(n - k)((3k + 1)/(2n + k + 1)) Binomial[3n, n - k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • PARI
    tabl(nn) = {my(m = matrix(nn, nn, n, k, if (nMichel Marcus, Nov 20 2015

Formula

Number triangle T(n, k) = (-1)^(n-k)*((3k+1)/(2n+k+1))*binomial(3n, n-k).
From Werner Schulte, Oct 27 2015: (Start)
If u(m,n) = (-1)^n*(Sum_{k=0..n} T(n,k)*((m+1)*k+1)) and v(m,n) = (-1)^n*(Sum_{k=0..n} (-1)^k*T(n,k)*m^k) and D(x) is the g.f. of A001764 then P(m,x) = Sum_{n>=0} u(m,n)*x^n = 1-(m+1)*x*D(x)^2 and Q(m,x) = Sum_{n>=0} v(m,n)*x^n = 1/P(m,x).
If G(k,x) is the g.f. of column k (k>=0) then G(k,x) = G(0,x)^(3*k+1). (End)

A049086 Number of tilings of 4 X 3n rectangle by 1 X 3 rectangles. Rotations and reflections are considered distinct tilings.

Original entry on oeis.org

1, 3, 13, 57, 249, 1087, 4745, 20713, 90417, 394691, 1722917, 7520929, 32830585, 143313055, 625594449, 2730863665, 11920848033, 52037243619, 227154537661, 991581805481, 4328482658041, 18894822411423, 82480245888473, 360045244866137, 1571680309076689, 6860746056673507
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a[0]:=1:a[1]:=3:a[2]:=13: for n from 3 to 25 do a[n]:=5*a[n-1]-3*a[n-2]+a[n-3] od: seq(a[n],n=0..25); # Emeric Deutsch, Feb 15 2005
    a := n -> hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Dec 09 2020
  • Mathematica
    LinearRecurrence[{5,-3,1},{1,3,13},50] (* Vincenzo Librandi, Feb 18 2012 *)
    CoefficientList[Series[(1-x)^2/(1-5x+3x^2-x^3), {x, 0, 40}], x] (* M. Poyraz Torcuk, Nov 06 2021 *)

Formula

a(n) = 5*a(n-1) - 3*a(n-2) + a(n-3).
a(n)/a(n-1) tends to 4.3652300134..., an eigenvalue of the matrix M and an inverse root of the polynomial x^3 - 3x^2 + 5x - 1. [a(n-2), a(n-1), a(n)] = M^n * [1 1 1], where M = the 3 X 3 matrix [ 5 -3 1 / 1 0 0 / 0 1 0]. E.g., a(3), a(4), a(5) = 57, 249, 1087. M^5 * [1 1 1] = [57, 249, 1087] - Gary W. Adamson, Apr 25 2004
G.f.: (1-x)^2/(1-5*x+3*x^2-x^3). - Colin Barker, Feb 03 2012
a(n) = Sum_{k=0..n} A109955(n,k)*2^k. - Philippe Deléham, Feb 18 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -8/27). - Peter Luschny, Dec 09 2020

Extensions

More terms from Emeric Deutsch, Feb 15 2005

A185963 Row sums of number triangle A185962.

Original entry on oeis.org

1, 0, -2, -3, 0, 7, 11, 1, -24, -40, -7, 82, 145, 37, -279, -524, -174, 945, 1888, 767, -3185, -6783, -3244, 10676, 24301, 13330, -35567, -86823, -53615, 117672, 309366, 212101, -386224, -1099385, -827997, 1255937, 3896480, 3197152, -4039199, -13773374
Offset: 0

Views

Author

Paul Barry, Feb 07 2011

Keywords

Examples

			G.f. = 1 - 2*x^2 - 3*x^3 + 7*x^5 + 11*x^6 + x^7 - 24*x^8 - 40*x^9 + ...
		

Crossrefs

Cf. A000931.

Programs

  • Maple
    a := n -> hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], 4/27):
    seq(simplify(a(n)), n=0..39); # Peter Luschny, Nov 03 2017
  • Mathematica
    LinearRecurrence[{2,-3,1},{1,0,-2},50] (* Vincenzo Librandi, Feb 18 2012 *)
  • PARI
    x='x+O('x^50); Vec((1-x)^2/(1-2*x+3*x^2-x^3)) \\ G. C. Greubel, Jul 23 2017

Formula

G.f.: (1-x)^2/(1-2x+3x^2-x^3).
a(n) = Sum_{k=0..n} Sum_{i=0..(2k+2)} C(2k+2,i)*Sum_{j=0..(n-k-i)} C(k+j,j)*C(j,n-k-i-j)*(-1)^(n-k-j).
a(n) = Sum_{k=0..n} binomial(n+2k,3k)*(-1)^k = Sum_{k=0..n} A109955(n,k)*(-1)^k. - Philippe Deléham, Feb 18 2012
a(n) = A000931(-3*n). - Michael Somos, Sep 18 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], 4/27). - Peter Luschny, Nov 03 2017

Extensions

More terms from Philippe Deléham, Feb 07 2012

A243116 a(n) = Sum_{k=0..n} C(n + 2*k, 3*k) * C(3*k, 2*k).

Original entry on oeis.org

1, 4, 28, 220, 1816, 15424, 133456, 1169872, 10354528, 92331904, 828204928, 7464652672, 67547774464, 613295870464, 5584367987968, 50974595472640, 466307503244800, 4273832891668480, 39237007284226048, 360768875975526400, 3321625537178669056, 30619908430235828224, 282578914501599305728
Offset: 0

Views

Author

Paul D. Hanna, Aug 20 2014

Keywords

Comments

Compare to: Sum_{k=0..n} (-1)^k * C(n+2*k,3*k) * C(3*k,2*k) = (-2)^n for n>=0.

Examples

			G.f.: A(x) = 1 + 4*x + 28*x^2 + 220*x^3 + 1816*x^4 + 15424*x^5 +...
where
A(x) = 1/(1-x) + 3*x/(1-x)^4 + 15*x^2/(1-x)^7 + 84*x^3/(1-x)^10 + 495*x^4/(1-x)^13 + 3003*x^5/(1-x)^16 + 18564*x^6/(1-x)^19 + 116280*x^7/(1-x)^22 + 735471*x^8/(1-x)^25 +...+ C(3*n, n)*x^n/(1-x)^(3*n+1) +...
ILLUSTRATION OF TERMS.
The sequence A005809(k) = C(3*k, 2*k) begins:
  [1, 3, 15, 84, 495, 3003, 18564, 116280, 735471, 4686825, ...];
the triangle A109955(n,k) = C(n + 2*k, 3*k) begins:
  1;
  1, 1;
  1, 4, 1;
  1, 10, 7, 1;
  1, 20, 28, 10, 1;
  1, 35, 84, 55, 13, 1;
  1, 56, 210, 220, 91, 16, 1;
  1, 84, 462, 715, 455, 136, 19, 1; ...
where a(n) = Sum_{k=0..n} A109955(n,k) * A005809(k):
  a(1) = 1*1 + 1*3 = 4;
  a(2) = 1*1 + 4*3 + 1*15 = 28;
  a(3) = 1*1 + 10*3 + 7*15 + 1*84 = 220;
  a(4) = 1*1 + 20*3 + 28*15 + 10*84 + 1*495 = 1816; ...
compare to: Sum_{k=0..n} (-1)^k * A109955(n,k) * A005809(k) = (-2)^n.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + 2*k, 3*k] * Binomial[3*k, 2*k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 21 2014 *)
  • PARI
    {a(n)=sum(k=0,n, binomial(n+2*k,3*k) * binomial(3*k,2*k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=-(-2)^n + 2*sum(k=0, n\2, binomial(n+4*k, 6*k) * binomial(6*k, 4*k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1); A=sum(m=0, n, binomial(3*m, m) * x^m/(1-x +x*O(x^n))^(3*m+1)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} C(3*n, n) * x^n / (1-x)^(3*n+1). - Paul D. Hanna, Aug 30 2014
G.f.: 1/(1-x) / ( 3 / G(x/(1-x)^3) - 2 ), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. - Paul D. Hanna, Aug 30 2014
G.f. satisfies: A(x) = 1 + (4-3*x)*A(x) - (4 - 39*x + 12*x^2 - 4*x^3)*A(x)^3. - Paul D. Hanna, Sep 05 2014
a(n) = Sum_{k=0..n} A109955(n,k) * A005809(k).
a(n) = -(-2)^n + 2*Sum_{k=0..[n/2]} C(n+4*k, 6*k) * C(6*k, 4*k).
Recurrence: 2*n*(2*n-1)*(3*n-4)*a(n) = (3*n-2)*(39*n^2 - 65*n + 18)*a(n-1) - 2*(n-1)*(18*n^2 - 33*n + 10)*a(n-2) + 4*(n-2)*(n-1)*(3*n-1)*a(n-3). - Vaclav Kotesovec, Aug 21 2014
From Peter Bala, Mar 11 2022: (Start)
a(n) = Sum_{k = 0..floor(n/4)} (-1)^k*binomial(n,k)*binomial(4*n-4*k,3*n).
a(n) = [x^n] ( (1 + x)^4 - x^4 )^n. Cf. A122868(n) = [x^n] ( (1 + x)^3 - x^3 )^n.
It follows that the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
a(n) = [x^n] (1 + x + (1 + x)^3)^n. - Seiichi Manyama, Nov 25 2024
Showing 1-4 of 4 results.