cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049125 Revert transform of (1 + x - x^2) / (1 + x)^2.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 68, 187, 534, 1544, 4554, 13576, 40968, 124681, 382636, 1182116, 3674674, 11483243, 36057516, 113701968, 359927638, 1143327888, 3643379152, 11643793399, 37311200060, 119852247220, 385864664018, 1244896820476
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ordered trees (A000108) with n edges in which every non-leaf non-root vertex has at most one leaf child. The g.f. A(x) is given by A(x)= x/(1-x B(x)) where B(x)=1+x+2x^2+4x^3+... is the g.f. for A143363. [David Callan, Aug 22 2014]
Conjecturally, the number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(k). [Martinez and Savage, 2.10] - Eric M. Schmidt, Jul 17 2017
a(n) is the number of dissections of a convex (n+m)-sided polygon by non-intersecting diagonals such that the selected m consecutive sides of the polygon will be in the same subpolygon and create no triangles. - Muhammed Sefa Saydam, Jul 12 2025

Examples

			x + x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 25*x^6 + 68*x^7 + 187*x^8 + 534*x^9 + ...
		

Programs

  • Mathematica
    a[1] = 1;
    a[n_] := SeriesCoefficient[InverseSeries[x(1+x-x^2)/(1+x)^2 + x O[x]^n, x], {x, 0, n}];
    Array[a, 28] (* Jean-François Alcover, Aug 17 2018, from PARI *)
    CoefficientList[InverseSeries[Series[x*(1 + x - x^2)/(1 + x)^2, {x, 0, 30}], x], x] (* Vaclav Kotesovec, Aug 17 2018 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x * (1 + x - x^2) / (1 + x)^2 + x * O(x^n)), n))} /* Michael Somos, Jul 13 2003 */

Formula

Given g.f. A(x), then series reversion of B(x) = x + x * A(x) is -B(-x). - Michael Somos, Sep 07 2005
Given g.f. A(x), then B(x) = x + x * A(x) satisfies B(x) = x + C(x * B(x)) where C(x) is g.f. of A001764 offset 1.
D-finite with recurrence 5*n*(n-1)*(37*n-106)*a(n) -4*(n-1) *(74*n^2-323*n+288)*a(n-1) +16*(-74*n^3+508*n^2-1157*n+876)* a(n-2) +2*(2*n-5)*(37*n-69)*(n-4)*a(n-3)=0. - R. J. Mathar, Jun 24 2018
a(n) ~ (1+s)^2 / (2 * sqrt(Pi*(1+4*s)) * n^(3/2) * (s*(1 + s - s^2)/(1+s)^2)^(n - 1/2)), where s = 0.675130870566646070889621798150060480808032527677372732 = 2*cos(arctan(sqrt(37/27))/3)/sqrt(3) + 2*sin(arctan(sqrt(37/27))/3) - 1 is the root of the equation s^3 + 3*s^2 - s = 1. - Vaclav Kotesovec, Aug 17 2018
From Muhammed Sefa Saydam, Jul 12 2025: (Start)
a(n) = Sum_{k=1..n+1} A046736(k) * A046736(n-k+2), for A046736(1) = 1 and n >= 2.
a(n) = a(n-1) + Sum_{k=0..n-3} a(k) * A046736(n-k+1), for a(0) = 1 and n >= 3.
a(n) = a(n-1) + Sum_{k=1..n-2} A143363(k) * a(n-k-1), for a(0) = 1 and n >= 2. (End)