cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366052 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x+x^3) ).

Original entry on oeis.org

1, 2, 7, 31, 154, 819, 4559, 26226, 154664, 930040, 5680920, 35150493, 219850505, 1387717660, 8828668582, 56553846890, 364449091112, 2361118198094, 15369247139879, 100468188756849, 659271433474584, 4341140182940382, 28675590236716905
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(3*n-2*k+1,n-3*k).

A366051 Expansion of (1/x) * Series_Reversion( x/(1-x+x^3) ).

Original entry on oeis.org

1, -1, 1, 0, -3, 9, -16, 13, 29, -157, 391, -562, -32, 3002, -10373, 20747, -18083, -47941, 271117, -712216, 1066699, 122131, -6464446, 22907125, -46951992, 40883304, 120187926, -679375906, 1809757015, -2731745887, -468147579, 17768126376, -63256877763
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^(n-k)*binomial(n+1, k)*binomial(n-k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^(n-k) * binomial(n+1,k) * binomial(n-k+1,n-3*k).

A366053 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x+x^3) ).

Original entry on oeis.org

1, 3, 15, 92, 628, 4579, 34917, 275041, 2220472, 18275896, 152780718, 1293657534, 11072033677, 95629771059, 832460471465, 7296161486583, 64331378963164, 570228657335744, 5078345448484216, 45418278349485960, 407749837317844851, 3673300856466182388
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(4*n-2*k+2, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(4*n-2*k+2,n-3*k).

A049133 Revert transform of (x - 1)^2/(1 - x - x^3).

Original entry on oeis.org

1, 1, 2, 4, 8, 14, 15, -31, -308, -1520, -6138, -22260, -74745, -234503, -684931, -1828743, -4249668, -7308296, -592722, 75389838, 487028178, 2286167634, 9278268220, 34247910114, 117081254935, 371845391419, 1086709633580, 2836930639816, 6075557104011
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A049128.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(x - 1)^2/(1 - x - x^3), {x, 0, 40}], x], x]] (* Vaclav Kotesovec, Jan 02 2021 *)

Formula

Recurrence: 2*n*(2*n - 1)*(26*n^2 - 125*n + 156)*a(n) = 3*(182*n^4 - 1291*n^3 + 3244*n^2 - 3388*n + 1158)*a(n-1) - 3*(78*n^4 - 973*n^3 + 3964*n^2 - 6793*n + 4431)*a(n-2) - (n-3)*(1690*n^3 - 10179*n^2 + 19241*n - 12657)*a(n-3) - 31*(n-4)*(n-3)*(26*n^2 - 73*n + 57)*a(n-4). - Vaclav Kotesovec, Jan 02 2021
a(n+1) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+1,k) * binomial(2*n-2*k,n-3*k). - Seiichi Manyama, Sep 27 2023

A372414 Coefficient of x^n in the expansion of ( (1-x+x^3) / (1-x)^2 )^n.

Original entry on oeis.org

1, 1, 3, 13, 55, 231, 981, 4215, 18271, 79735, 349843, 1541783, 6820045, 30263689, 134658681, 600578373, 2684116863, 12017803439, 53895617379, 242054324055, 1088530440315, 4900978877115, 22089865194543, 99662269990363, 450049706481181, 2033999993960581
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(2*n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1-x+x^3) ).
Showing 1-5 of 5 results.