cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049149 Numbers k such that the Euler totient function phi(k) is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 14, 18, 22, 23, 31, 43, 46, 47, 49, 59, 62, 67, 71, 79, 83, 86, 94, 98, 103, 107, 118, 121, 131, 134, 139, 142, 158, 166, 167, 179, 191, 206, 211, 214, 223, 227, 239, 242, 262, 263, 278, 283, 311, 331, 334, 347, 358, 359, 367, 382, 383
Offset: 1

Views

Author

Keywords

Comments

Consists of 1, 2, 4, p, p^2, 2p, and 2p^2, where p are the odd primes from A039787. - Ivan Neretin, Aug 24 2016

Examples

			a(17) = 49 is here because phi(49) = 42 = 2*3*7 is squarefree. Primes p, such that p-1 is squarefree are included.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], MoebiusMu[EulerPhi[#]] != 0 &]
  • PARI
    isok(n) = issquarefree(eulerphi(n)); \\ Michel Marcus, Aug 24 2016

Formula

The number of terms not exceeding k is (3*a/2) * pi(k) + O(k/(log(k)^c)), where pi(k) = A000720(k), c is any constant > 0, and a = 0.373955... is Artin's constant (A005596) (Pappalardi et al., 2003; Banks and Pappalardi, 2006). - Amiram Eldar, Jul 28 2020

Extensions

Corrected by T. D. Noe, Oct 25 2006