A049214
Scaled coefficients of (arctanh x)^3.
Original entry on oeis.org
1, 20, 784, 52352, 5360256, 782525952, 154594381824, 39746508226560, 12902483299368960, 5162443736924160000, 2496471943395999744000, 1435556519572510605312000, 968234590214616380866560000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
(arctanh x)^3 = x^3 + x^5 + 14/15*x^7 + 818/945*x^9 + ...
-
a[n_] := SeriesCoefficient[ArcTanh[x]^3, {x, 0, 2n+3}]*(2n+3)!/6;
a /@ Range[0, 12] (* Jean-François Alcover, Mar 26 2021 *)
A049216
Scaled coefficients of (arctanh x)^5.
Original entry on oeis.org
1, 70, 6384, 804320, 136804096, 30459752960, 8632830664704, 3041109959196672, 1305140879116763136, 670935549630120394752, 407240889859179425562624, 288272814806050917816729600
Offset: 0
Joe Keane (jgk(AT)jgk.org)
(arctanh x)^5 = x^5 + 5/3*x^7 + 19/9*x^9 + 457/189*x^11 + ...
-
a[n_] := SeriesCoefficient[ArcTanh[x]^5, {x, 0, 2n+5}]*(2n+5)!/5!;
a /@ Range[0, 11] (* Jean-François Alcover, Mar 26 2021 *)
A008309
Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.
Original entry on oeis.org
1, 1, -2, 1, -8, 1, 24, -20, 1, 184, -40, 1, -720, 784, -70, 1, -8448, 2464, -112, 1, 40320, -52352, 6384, -168, 1, 648576, -229760, 14448, -240, 1, -3628800, 5360256, -804320, 29568, -330, 1
Offset: 1
With the zero coefficients included the data begins 1; 0,1; -2,0,1; 0,-8,0,1; 24,0,-20,0,1; 0,184,0,-40,0,1; ..., which is A049218.
The table without zeros begins
1;
1;
-2, 1;
-8, 1;
24, -20, 1;
184, -40, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.
-
t[n_, k_] := (-1)^((3*n+k)/2)*n!/2^k*Sum[2^i*Binomial[n-1, i-1]*StirlingS1[i, k]/i!, {i, k, n}]; Flatten[Table[t[n,k], {n,1,11}, {k, 2-Mod[n, 2], n, 2}]] (* Jean-François Alcover, Aug 31 2011, after Vladimir Kruchinin *)
-
a(n)=atan(x)^n/n!
T(n,k)=polcoeff(serlaplace(a(2*k-n%2)), n)
Showing 1-3 of 3 results.