cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049224 A convolution triangle of numbers obtained from A025751.

Original entry on oeis.org

1, 15, 1, 330, 30, 1, 8415, 885, 45, 1, 232254, 26730, 1665, 60, 1, 6735366, 825858, 58320, 2670, 75, 1, 202060980, 25992252, 2003562, 106560, 3900, 90, 1, 6213375135, 830282805, 68351283, 4038741, 174825, 5355, 105, 1, 194685754230
Offset: 1

Views

Author

Keywords

Comments

a(n,1) = A025751(n); a(n,1)= 6^(n-1)*5*A034787(n-1)/n!, n >= 2.
G.f. for m-th column: ((1-(1-36*x)^(1/6))/6)^m.

Crossrefs

Cf. A048966, A049223. Row sums = A025759.

Programs

  • Maxima
    T(n,m):=(m*sum(binomial(-m+2*i-1,i-1)*2^(2*n-2*i)*sum(binomial(k,n-k-i)*3^(k+i-m)*(-1)^(n-k-i)*binomial(n+k-1,n-1),k,0,n-i),i,m,n))/n; /* Vladimir Kruchinin, Dec 21 2011 */

Formula

a(n, m) = 6*(6*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f.: [(1-(1-36*x)^(1/6))/6]^m=sum(n>=m, T(n,m)*x^n), T(n,m)=(m*sum(i=m..n, binomial(-m+2*i-1,i-1)*2^(2*n-2*i)*sum(k=0..n-i, binomial(k,n-k-i)*3^(k+i-m)*(-1)^(n-k-i)*binomial(n+k-1,n-1))))/n. - Vladimir Kruchinin, Dec 21 2011