A049224 A convolution triangle of numbers obtained from A025751.
1, 15, 1, 330, 30, 1, 8415, 885, 45, 1, 232254, 26730, 1665, 60, 1, 6735366, 825858, 58320, 2670, 75, 1, 202060980, 25992252, 2003562, 106560, 3900, 90, 1, 6213375135, 830282805, 68351283, 4038741, 174825, 5355, 105, 1, 194685754230
Offset: 1
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Programs
-
Maxima
T(n,m):=(m*sum(binomial(-m+2*i-1,i-1)*2^(2*n-2*i)*sum(binomial(k,n-k-i)*3^(k+i-m)*(-1)^(n-k-i)*binomial(n+k-1,n-1),k,0,n-i),i,m,n))/n; /* Vladimir Kruchinin, Dec 21 2011 */
Formula
a(n, m) = 6*(6*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f.: [(1-(1-36*x)^(1/6))/6]^m=sum(n>=m, T(n,m)*x^n), T(n,m)=(m*sum(i=m..n, binomial(-m+2*i-1,i-1)*2^(2*n-2*i)*sum(k=0..n-i, binomial(k,n-k-i)*3^(k+i-m)*(-1)^(n-k-i)*binomial(n+k-1,n-1))))/n. - Vladimir Kruchinin, Dec 21 2011
Comments