A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1
Examples
Triangle begins as: 1; 5, 1; 55, 15, 1; 935, 295, 30, 1; 21505, 7425, 925, 50, 1; 623645, 229405, 32400, 2225, 75, 1; 21827575, 8423415, 1298605, 103600, 4550, 105, 1; 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A013988 if k eq 0 then return 0; elif k eq n then return 1; else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Mathematica
(* First program *) rows = 10; b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs; A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
-
Sage
# uses[inverse_bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
A025759 6th-order Vatalan numbers (generalization of Catalan numbers).
1, 1, 16, 361, 9346, 260710, 7622290, 230167345, 7116228250, 224012186830, 7152402830440, 230999414308090, 7531444277855740, 247510726140787240, 8189274963276187990, 272537576338530727585, 9116110475685684958810, 306286229879232067776310
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Mathematica
Table[SeriesCoefficient[6/(5 + (1 - 36*x)^(1/6)), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Dec 29 2012 *)
-
Maxima
a[0]:1$ a[1]:1$ a[2]:16$ a[3]:361$ a[4]:9346$ a[5]:260710$ a[n]:=((n-1)*(n-2)*(n-3)*(n-4)*(78119*n-273420)*a[n-1]-90*(n-2)*(n-3)*(n-4)*(62494*n^2-499959*n+1014685)*a[n-2]+180*(n-3)*(n-4)*(1124856*n^3-15185808*n^2+68852647*n-104826890)*a[n-3]-3240*(n-4)*(1124784*n^4-22496184*n^3+169193274*n^2-567111339*n+714764687)*a[n-4]+5184*(5060556*n^5-139170960*n^4+1530231885*n^3-8408803050*n^2+23092951859*n-25356134300)*a[n-5]+93312*(2*n-11)*(3*n-16)*(3*n-17)*(6*n-31)*(6*n-35)*a[n-6])/(434*n*(n-1)*(n-2)*(n-3)*(n-4)); makelist(a[n],n,0,500); /* Tani Akinari, Sep 15 2015 */
-
PARI
default(seriesprecision, 40); Vec(6/(5+(1-36*x)^(1/6)) + O(x^30)) \\ Michel Marcus, Sep 15 2015
Formula
G.f.: 6/(5+(1-36*x)^(1/6)).
Recurrence: for n>5,
a(n)=((n-1)*(n-2)*(n-3)*(n-4)*(78119*n-273420)*a(n-1)-90*(n-2)*(n-3)*(n-4)*(62494*n^2-499959*n+1014685)*a(n-2)+180*(n-3)*(n-4)*(1124856*n^3-15185808*n^2+68852647*n-104826890)*a(n-3)-3240*(n-4)*(1124784*n^4-22496184*n^3+169193274*n^2-567111339*n+714764687)*a(n-4)+5184*(5060556*n^5-139170960*n^4+1530231885*n^3-8408803050*n^2+23092951859*n-25356134300)*a(n-5)+93312*(2*n-11)*(3*n-16)*(3*n-17)*(6*n-31)*(6*n-35)*a(n-6))/(434*n*(n-1)*(n-2)*(n-3)*(n-4)). - Tani Akinari, Sep 15 2015
a(n) ~ 36^n / (25 * Gamma(5/6) * n^(7/6)) * (1 - 2^(1/3)*sqrt(3)*Gamma(2/3) / (5*sqrt(Pi)*n^(1/6))). - Vaclav Kotesovec, Sep 22 2015
a(n) = (-1)^(n+1) * 6^(2*n+1) * Sum_{k>=0} (-1/5)^(k+1) * binomial(k/6,n). - Seiichi Manyama, Aug 04 2024
A048966 A convolution triangle of numbers obtained from A025748.
1, 3, 1, 15, 6, 1, 90, 39, 9, 1, 594, 270, 72, 12, 1, 4158, 1953, 567, 114, 15, 1, 30294, 14580, 4482, 1008, 165, 18, 1, 227205, 111456, 35721, 8667, 1620, 225, 21, 1, 1741905, 867834, 287199, 73656, 15075, 2430, 294, 24, 1, 13586859, 6857136, 2328183, 623106, 136323, 24354, 3465, 372, 27, 1
Offset: 1
Comments
A generalization of the Catalan triangle A033184.
Examples
Triangle begins: 1; 3, 1; 15, 6, 1; 90, 39, 9, 1; 594, 270, 72, 12, 1; 4158, 1953, 567, 114, 15, 1;
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Haskell
a048966 n k = a048966_tabl !! (n-1) !! (k-1) a048966_row n = a048966_tabl !! (n-1) a048966_tabl = [1] : f 2 [1] where f x xs = ys : f (x + 1) ys where ys = map (flip div x) $ zipWith (+) (map (* 3) $ zipWith (*) (map (3 * (x - 1) -) [1..]) (xs ++ [0])) (zipWith (*) [1..] ([0] ++ xs)) -- Reinhard Zumkeller, Feb 19 2014
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = 3*(3*(n-1) - m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m := 0; a[n_, 0] = 0; a[1, 1] = 1; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 26 2011, after given formula *)
Formula
a(n, m) = 3*(3*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-9*x)^(1/3))/3)^m.
a(n,m) = m/n * sum(k=0..n-m, binomial(k,n-m-k) * 3^k*(-1)^(n-m-k) * binomial(n+k-1,n-1)). - Vladimir Kruchinin, Feb 08 2011
Comments