A049354 Digitally balanced numbers in base 3: equal numbers of 0's, 1's, 2's.
11, 15, 19, 21, 260, 266, 268, 278, 290, 294, 302, 304, 308, 312, 316, 318, 332, 344, 348, 380, 384, 396, 410, 412, 416, 420, 424, 426, 434, 438, 450, 460, 462, 468, 500, 502, 508, 518, 520, 524, 528, 532, 534, 544, 550, 552, 572, 574, 578, 582, 586, 588, 596
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Haskell
a049354 n = a049354_list !! (n-1) a049354_list = filter f [1..] where f n = t0 == a062756 n && t0 == a081603 n where t0 = a077267 n -- Reinhard Zumkeller, Aug 09 2014
-
Mathematica
Select[Range[600],Length[Union[DigitCount[#,3]]]== 1&] FromDigits[#,3]&/@DeleteCases[Flatten[Permutations/@Table[PadRight[{},3n,{1,0,2}],{n,3}],1],?(#[[1]]==0&)]//Sort (* _Harvey P. Dale, May 30 2016 *) Select[Range@5000, Differences@DigitCount[#,3]=={0,0}&] (* Hans Rudolf Widmer, Dec 11 2021 *)
-
Python
from sympy.ntheory import count_digits def ok(n): c = count_digits(n, 3); return c[0] == c[1] == c[2] print([k for k in range(600) if ok(k)]) # Michael S. Branicky, Nov 15 2021