A049384 a(0)=1, a(n+1) = (n+1)^a(n).
1, 1, 2, 9, 262144
Offset: 0
Keywords
Examples
a(4) = 4^9 = 262144. a(5) = 5^262144 has 183231 decimal digits. - _Rick L. Shepherd_, Feb 15 2002 a(5) = ~6.2060698786608744707483205572846793 * 10^183230. - _Robert G. Wilson v_, Oct 24 2015 a(6) = 6^(5^262144) has 4.829261036048226... * 10^183230 decimal digits. - _Jack Braxton_, Feb 17 2023
References
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- Underwood Dudley, "Mathematical Cranks", MAA 1992, p. 338.
- F. Luca, D. Marques, Perfect powers in the summatory function of the power tower, J. Theor. Nombr. Bordeaux 22 (3) (2010) 703, doi:10.5802/jtnb.740
Links
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math.NT/0611293, 2006-2007.
- Walter Arrighetti, LabCEM, Department of Electronic Engineering, Univ. degli Studi di Roma "La Sapienza".
- Walter Arrighetti, Double Vision [Broken link]
- Vladimir Orlovsky, Very Big Number, Feb 19 1999
- J. Sondow, MathWorld: Exponential Factorial
- J. Sondow, Irrationality measures, irrationality bases, and a theorem of Jarnik, arXiv:math/0406300 [math.NT], 2004; see L_4 in Example 4.
- Wikipedia, Exponential factorial
- Wikipedia, Liouville number
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, n^a(n-1)) end: seq(a(n), n=0..4); # Alois P. Heinz, Jan 17 2024
-
Mathematica
Expofactorial[0] := 1; Expofactorial[n_Integer] := n^Expofactorial[n - 1]; Table[Expofactorial[n], {n, 0, 4}] (* Walter Arrighetti, Jan 24 2006 *) nxt[{n_,a_}]:={n+1,(n+2)^a}; Transpose[NestList[nxt,{0,1},4]][[2]] (* Harvey P. Dale, May 26 2013 *)
-
PARI
a(n)=if(n>1,n^a(n-1),1) \\ Charles R Greathouse IV, Sep 13 2013
Comments