cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049401 Number of Young tableaux of height <= 5.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 75, 225, 715, 2347, 7990, 27908, 99991, 365587, 1362310, 5159208, 19831101, 77233517, 304423574, 1212962072, 4881181036, 19821471956, 81165639197, 334925706659, 1391935877463, 5823186349671, 24511802558326, 103772782048252, 441696903185704
Offset: 0

Views

Author

Keywords

Comments

Also the number of n-length words w over alphabet {a,b,c,d,e} such that for every prefix z of w we have #(z,a) >= #(z,b) >= #(z,c) >= #(z,d) >= #(z,e), where #(z,x) counts the letters x in word z. The a(5) = 26 words are: aaaaa, aaaab, aaaba, aabaa, abaaa, aaabb, aabab, abaab, aabba, ababa, aaabc, aabac, abaac, aabca, abaca, abcaa, aabbc, ababc, aabcb, abacb, abcab, aabcd, abacd, abcad, abcda, abcde. - Alois P. Heinz, May 30 2012

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), y_5(n), p. 452.

Crossrefs

Sum of first five diagonals of A047884. Cf. A007579.
Column k=5 of A182172. - Alois P. Heinz, May 30 2012

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, [1, 1, 2][n+1], ((3*n^2+17*n+15)*a(n-1)
           +(n-1)*(13*n+9)*a(n-2) -15*(n-1)*(n-2)*a(n-3)) /
           ((n+4)*(n+6)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 1, 2}[[n+1]], ((3*n^2+17*n+15)*a[n-1] + (n-1)*(13*n+9)*a[n-2] - 15*(n-1)*(n-2)*a[n-3]) / ((n+4)*(n+6))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
  • PARI
    a(n) = 6*n!*sum(k=0, n\2, (2*k+2)!/((n-2*k)!*k!*(k+1)!*(k+2)!*(k+3)!)); \\ Seiichi Manyama, Mar 27 2025

Formula

E.g.f.: e^x*(BesselI(0, 2*x)^2 - BesselI(0, 2*x)*BesselI(2, 2*x) - BesselI(0, 2*x)*BesselI(4, 2*x) - BesselI(1, 2*x)^2 + 2*BesselI(1, 2*x)*BesselI(3, 2*x) + BesselI(2, 2*x)*BesselI(4, 2*x) - BesselI(3, 2*x)^2) (BesselI = modified Bessel function of first kind).
a(n) ~ 3*5^(n+5)/(8*Pi*n^5). - Vaclav Kotesovec, Aug 18 2013
D-finite with recurrence (n+6)*(n+4)*a(n) +(-3*n^2-17*n-15)*a(n-1) -(13*n+9)*(n-1)*a(n-2) +15*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 23 2021
a(n) = 6 * n! * Sum_{k=0..floor(n/2)} (2*k+2)!/((n-2*k)!*k!*(k+1)!*(k+2)!*(k+3)!). - Seiichi Manyama, Mar 27 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001