A049403 A triangle of numbers related to triangle A030528; array a(n,m), read by rows (1 <= m <= n).
1, 1, 1, 0, 3, 1, 0, 3, 6, 1, 0, 0, 15, 10, 1, 0, 0, 15, 45, 15, 1, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0, 0, 0, 0, 10395, 62370
Offset: 1
Examples
Triangle a(n,m) (with rows n >= 1 and columns m >= 1) begins as follows: 1; with row polynomial E(1,x) = x; 1, 1; with row polynomial E(2,x) = x^2 + x; 0, 3, 1; with row polynomial E(3,x) = 3*x^2 + x^3; 0, 3, 6, 1; with row polynomial E(4,x) = 3*x^2 + 6*x^3 + x^4; 0, 0, 15, 10, 1; 0, 0, 15, 45, 15, 1; 0, 0, 0, 105, 105, 21, 1; 0, 0, 0, 105, 420, 210, 28, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First 10 rows of the array and more.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 28 2016
-
Mathematica
t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 11}, {k, n}] // Flatten (* Second program: *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 13; M = BellMatrix[If[#<2, 1, 0]&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
Formula
a(n, m) = n!*A030528(n, m)/(m!*2^(n-m)) for n >= m >= 1.
a(n, m) = (2*m-n+1)*a(n-1, m) + a(n-1, m-1) for n >= m >= 1 with a(n, m) = 0 for n < m, a(n, 0) := 0, and a(1, 1) = 1. [The 0th column does not appear in this array. - Petros Hadjicostas, Oct 28 2019]
E.g.f. for the m-th column: (x*(1 + x/2))^m/m!.
a(n,m) = A122848(n,m). - R. J. Mathar, Jan 14 2011
Comments