A144357 Partition number array, called M31(-1), related to A049403(n,m) = S1(-1;n,m) (generalized Stirling triangle).
1, 1, 1, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 0, 15, 10, 1, 0, 0, 0, 0, 0, 0, 15, 0, 45, 15, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 105, 0, 105, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 105, 0, 0, 420, 0, 210, 28, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 945, 0, 0, 1260, 0, 378, 36
Offset: 1
Examples
[1]; [1,1]; [0,3,1]; [0,0,3,6,1]; [0,0,0,0,15,10,1]; ... a(4,3) = 3 = 3*S1(-1;2,1)^2. The relevant partition of 4 is (2^2).
Links
- Wolfdieter Lang, First 10 rows of the array and more.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,k) = (n!/(Product_{j=1..n} e(n,k,j)!*j!^e(n,k,j))*Product_{j=1..n} S1(-1;j,1)^e(n,k,j) = M3(n,k)*Product_{j=1..n} S1(-1;j,1)^e(n,k,j) with S1(-1;n,1) |= A008279(1,n-1) = [1,1,0,...], n >= 1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k) = A036040.
Comments