cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A131441 Row sums of triangle A130757 (coefficients of scaled Laguerre-Sonin polynomials n!(2^(n-m))*L(n,1/2,x)).

Original entry on oeis.org

1, 2, 6, 20, 28, -936, -23672, -469456, -9112560, -182135008, -3804634784, -83297957568, -1906560847424, -45349267830400, -1110454747949952, -27582769902812416, -677408818380914432, -15581576995770441216, -284593895830642711040
Offset: 0

Views

Author

Wolfdieter Lang, Aug 07 2007

Keywords

Crossrefs

Cf. A130757.

Programs

  • Magma
    [Round(Factorial(n)*(&+[(-1)^k*2^(n-k)*Gamma(n+3/2)/(Gamma(k+1) *Gamma(n -k+1)*Gamma(k+3/2)): k in [0..n]])): n in [0..20]]; // G. C. Greubel, May 14 2018
  • Mathematica
    T[n_,k_]:= (-1)^k*n!*2^(n-k)*Binomial[n +1/2, n-k]/k!; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 40}] (* G. C. Greubel, May 14 2018 *)
  • PARI
    for(n=0,30, print1(sum(k=0,n, (-1)^k*n!*2^(n-k)*binomial(n+1/2, n-k)/k!), ", ")) \\ G. C. Greubel, May 14 2018
    

Formula

a(n) = Sum_{m=0..n} A130757(n,m), n>=0, with A130757(n,m) = n!*2^(n-m) *(-1)^m*binomial(n+1/2,n-m)/m!, n>=m>=0, else 0.
D-finite with recurrence: a(n) +2*(1-2*n)*a(n-1) +2*(2*n-1)*(n-1)*a(n-2)=0. - R. J. Mathar, Oct 02 2013

A014105 Second hexagonal numbers: a(n) = n*(2*n + 1).

Original entry on oeis.org

0, 3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 528, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 2346, 2485, 2628, 2775, 2926, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

Note that when starting from a(n)^2, equality holds between series of first n+1 and next n consecutive squares: a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2*n)^2; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2. - Henry Bottomley, Jan 22 2001; with typos fixed by Zak Seidov, Sep 10 2015
a(n) = sum of second set of n consecutive even numbers - sum of the first set of n consecutive odd numbers: a(1) = 4-1, a(3) = (8+10+12) - (1+3+5) = 21. - Amarnath Murthy, Nov 07 2002
Partial sums of odd numbers 3 mod 4, that is, 3, 3+7, 3+7+11, ... See A001107. - Jon Perry, Dec 18 2004
If Y is a fixed 3-subset of a (2n+1)-set X then a(n) is the number of (2n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
More generally (see the first comment), for n > 0, let b(n,k) = a(n) + k*(4*n + 1). Then b(n,k)^2 + (b(n,k) + 1)^2 + ... + (b(n,k) + n)^2 = (b(n,k) + n + 1 + 2*k)^2 + ... + (b(n,k) + 2*n + 2*k)^2 + k^2; e.g., if n = 3 and k = 2, then b(n,k) = 47 and 47^2 + ... + 50^2 = 55^2 + ... + 57^2 + 2^2. - Charlie Marion, Jan 01 2011
Sequence found by reading the line from 0, in the direction 0, 10, ..., and the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Nov 09 2011
a(n) is the number of positions of a domino in a pyramidal board with base 2n+1. - César Eliud Lozada, Sep 26 2012
Differences of row sums of two consecutive rows of triangle A120070, i.e., first differences of A016061. - J. M. Bergot, Jun 14 2013 [In other words, the partial sums of this sequence give A016061. - Leo Tavares, Nov 23 2021]
a(n)*Pi is the total length of half circle spiral after n rotations. See illustration in links. - Kival Ngaokrajang, Nov 05 2013
For corresponding sums in first comment by Henry Bottomley, see A059255. - Zak Seidov, Sep 10 2015
a(n) also gives the dimension of the simple Lie algebras B_n (n >= 2) and C_n (n >= 3). - Wolfdieter Lang, Oct 21 2015
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for unsigned A130757, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 13 2015
Partial sums of squares with alternating signs, ending in an even term: a(n) = 0^2 - 1^2 +- ... + (2*n)^2, cf. Example & Formula from Berselli, 2013. - M. F. Hasler, Jul 03 2018
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central peak and the largest Dyck path has a central valley, n > 0. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
a(n) is the area of a triangle with vertices at (0,0), (2*n+1, 2*n), and ((2*n+1)^2, 4*n^2). - Art Baker, Dec 12 2018
This sequence is the largest subsequence of A000217 such that gcd(a(n), 2*n) = a(n) mod (2*n) = n, n > 0 up to a given value of n. It is the interleave of A033585 (a(n) is even) and A033567 (a(n) is odd). - Torlach Rush, Sep 09 2019
A generalization of Hasler's Comment (Jul 03 2018) follows. Let P(k,n) be the n-th k-gonal number. Then for k > 1, partial sums of {P(k,n)} with alternating signs, ending in an even term, = n*((k-2)*n + 1). - Charlie Marion, Mar 02 2021
Let U_n(H) = {A in M_n(H): A*A^H = I_n} be the group of n X n unitary matrices over the quaternions (A^H is the conjugate transpose of A. Note that over the quaternions we still have A*A^H = I_n <=> A^H*A = I_n by mapping A and A^H to (2n) X (2n) complex matrices), then a(n) is the dimension of its Lie algebra u_n(H) = {A in M_n(H): A + A^H = 0} as a real vector space. A basis is given by {(E_{st}-E_{ts}), i*(E_{st}+E_{ts}), j*(E_{st}+E_{ts}), k*(E_{st}+E_{ts}): 1 <= s < t <= n} U {i*E_{tt}, j*E_{tt}, k*E_{tt}: t = 1..n}, where E_{st} is the matrix with all entries zero except that its (st)-entry is 1. - Jianing Song, Apr 05 2021

Examples

			For n=6, a(6) = 0^2 - 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2 - 11^2 + 12^2 = 78. - _Bruno Berselli_, Aug 29 2013
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)

Crossrefs

Second column of array A094416.
Equals A033586(n) divided by 4.
See Comments of A132124.
Second n-gonal numbers: A005449, A147875, A045944, A179986, A033954, A062728, A135705.
Row sums in triangle A253580.

Programs

Formula

a(n) = 3*Sum_{k=1..n} tan^2(k*Pi/(2*(n + 1))). - Ignacio Larrosa Cañestro, Apr 17 2001
a(n)^2 = n*(a(n) + 1 + a(n) + 2 + ... + a(n) + 2*n); e.g., 10^2 = 2*(11 + 12 + 13 + 14). - Charlie Marion, Jun 15 2003
From N. J. A. Sloane, Sep 13 2003: (Start)
G.f.: x*(3 + x)/(1 - x)^3.
E.g.f.: exp(x)*(3*x + 2*x^2).
a(n) = A000217(2*n) = A000384(-n). (End)
a(n) = A084849(n) - 1; A100035(a(n) + 1) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A126890(n, k) + A126890(n, n-k), 0 <= k <= n. - Reinhard Zumkeller, Dec 30 2006
a(2*n) = A033585(n); a(3*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = a(n-1) + 4*n - 1 (with a(0) = 0). - Vincenzo Librandi, Dec 24 2010
a(n) = Sum_{k=0.2*n} (-1)^k*k^2. - Bruno Berselli, Aug 29 2013
a(n) = A242342(2*n + 1). - Reinhard Zumkeller, May 11 2014
a(n) = Sum_{k=0..2} C(n-2+k, n-2) * C(n+2-k, n), for n > 1. - J. M. Bergot, Jun 14 2014
a(n) = floor(Sum_{j=(n^2 + 1)..((n+1)^2 - 1)} sqrt(j)). Fractional portion of each sum converges to 1/6 as n -> infinity. See A247112 for a similar summation sequence on j^(3/2) and references to other such sequences. - Richard R. Forberg, Dec 02 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, with a(0) = 0, a(1) = 3, and a(2) = 10. - Harvey P. Dale, Feb 10 2015
Sum_{n >= 1} 1/a(n) = 2*(1 - log(2)) = 0.61370563888010938... (A188859). - Vaclav Kotesovec, Apr 27 2016
From Wolfdieter Lang, Apr 27 2018: (Start)
a(n) = trinomial(2*n, 2) = trinomial(2*n, 2*(2*n-1)), for n >= 1, with the trinomial irregular triangle A027907; i.e., trinomial(n,k) = A027907(n,k).
a(n) = (1/Pi) * Integral_{x=0..2} (1/sqrt(4 - x^2)) * (x^2 - 1)^(2*n) * R(4*(n-1), x), for n >= 0, with the R polynomial coefficients given in A127672, and R(-m, x) = R(m, x). [See Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 2, rewritten with x = 2*cos(phi).] (End)
a(n) = A002943(n)/2. - Ralf Steiner, Jul 23 2019
a(n) = A000290(n) + A002378(n). - Torlach Rush, Nov 02 2020
a(n) = A003215(n) - A000290(n+1). See Squared Hexagons illustration. Leo Tavares, Nov 23 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) - 2. - Amiram Eldar, Nov 28 2021

Extensions

Link added and minor errors corrected by Johannes W. Meijer, Feb 04 2010

A099174 Triangle read by rows: coefficients of modified Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 6, 0, 1, 0, 15, 0, 10, 0, 1, 15, 0, 45, 0, 15, 0, 1, 0, 105, 0, 105, 0, 21, 0, 1, 105, 0, 420, 0, 210, 0, 28, 0, 1, 0, 945, 0, 1260, 0, 378, 0, 36, 0, 1, 945, 0, 4725, 0, 3150, 0, 630, 0, 45, 0, 1, 0, 10395, 0, 17325, 0, 6930, 0, 990, 0, 55, 0, 1
Offset: 0

Views

Author

Ralf Stephan, on a suggestion of Karol A. Penson, Oct 13 2004

Keywords

Comments

Absolute values of A066325.
T(n,k) is the number of involutions of {1,2,...,n}, having k fixed points (0 <= k <= n). Example: T(4,2)=6 because we have 1243,1432,1324,4231,3214 and 2134. - Emeric Deutsch, Oct 14 2006
Riordan array [exp(x^2/2),x]. - Paul Barry, Nov 06 2008
Same as triangle of Bessel numbers of second kind, B(n,k) (see Cheon et al., 2013). - N. J. A. Sloane, Sep 03 2013
The modified Hermite polynomial h(n,x) (as in the Formula section) is the numerator of the rational function given by f(n,x) = x + (n-2)/f(n-1,x), where f(x,0) = 1. - Clark Kimberling, Oct 20 2014
Second lower diagonal T(n,n-2) equals positive triangular numbers A000217 \ {0}. - M. F. Hasler, Oct 23 2014
From James East, Aug 17 2015: (Start)
T(n,k) is the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the Brauer monoid of degree n.
For n < k with n == k (mod 2), T(n,k) is the rank (minimal size of a generating set) and idempotent rank (minimal size of an idempotent generating set) of the ideal consisting of all rank <= k elements of the Brauer monoid. (End)
This array provides the coefficients of a Laplace-dual sequence H(n,x) of the Dirac delta function, delta(x), and its derivatives, formed by taking the inverse Laplace transform of these modified Hermite polynomials. H(n,x) = h(n,D) delta(x) with h(n,x) as in the examples and the lowering and raising operators L = -x and R = -x + D = -x + d/dx such that L H(n,x) = n * H(n-1,x) and R H(n,x) = H(n+1,x). The e.g.f. is exp[t H(.,x)] = e^(t^2/2) e^(t D) delta(x) = e^(t^2/2) delta(x+t). - Tom Copeland, Oct 02 2016
Antidiagonals of this entry are rows of A001497. - Tom Copeland, Oct 04 2016
This triangle is the reverse of that in Table 2 on p. 7 of the Artioli et al. paper and Table 6.2 on p. 234 of Licciardi's thesis, with associations to the telephone numbers. - Tom Copeland, Jun 18 2018 and Jul 08 2018
See A344678 for connections to a Heisenberg-Weyl algebra of differential operators, matching and independent edge sets of the regular n-simplices with partially labeled vertices, and telephone switchboard scenarios. - Tom Copeland, Jun 02 2021

Examples

			h(0,x) = 1
h(1,x) = x
h(2,x) = x^2 + 1
h(3,x) = x^3 + 3*x
h(4,x) = x^4 + 6*x^2 + 3
h(5,x) = x^5 + 10*x^3 + 15*x
h(6,x) = x^6 + 15*x^4 + 45*x^2 + 15
From _Paul Barry_, Nov 06 2008: (Start)
Triangle begins
   1,
   0,  1,
   1,  0,  1,
   0,  3,  0,  1,
   3,  0,  6,  0,  1,
   0, 15,  0, 10,  0,  1,
  15,  0, 45,  0, 15,  0,  1
Production array starts
  0, 1,
  1, 0, 1,
  0, 2, 0, 1,
  0, 0, 3, 0, 1,
  0, 0, 0, 4, 0, 1,
  0, 0, 0, 0, 5, 0, 1 (End)
		

Crossrefs

Row sums (polynomial values at x=1) are A000085.
Polynomial values: A005425 (x=2), A202834 (x=3), A202879(x=4).
Cf. A137286.
Cf. A001497.

Programs

  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 then n!/2^((n-k)/2)/((n-k)/2)!/k! else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 14 2006
  • Mathematica
    nn=10;a=y x+x^2/2!;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, May 08 2012 *)
    H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x]-(n-1)* H[n-2, x]; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten // Abs (* Jean-François Alcover, May 23 2016 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[HermiteH[n, x I/Sqrt[2]] (Sqrt[1/2]/I)^n, x, k]]; (* Michael Somos, May 10 2019 *)
  • PARI
    T(n,k)=if(k<=n && k==Mod(n,2), n!/k!/(k=(n-k)/2)!>>k) \\ M. F. Hasler, Oct 23 2014
    
  • Python
    import sympy
    from sympy import Poly
    from sympy.abc import x, y
    def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
    def a(n): return [abs(cf) for cf in Poly(H(n, x), x).all_coeffs()[::-1]]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 1
        for k in range(n - 2, -1, -2):
            row[k] = (row[k + 2] * (k + 2) * (k + 1)) // (n - k)
        return row  # Peter Luschny, Jan 08 2023
  • Sage
    def A099174_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*M[n-1,k+1]
        return M
    A099174_triangle(9)  # Peter Luschny, Oct 06 2012
    

Formula

h(k, x) = (-I/sqrt(2))^k * H(k, I*x/sqrt(2)), H(n, x) the Hermite polynomials (A060821, A059343).
T(n,k) = n!/(2^((n-k)/2)*((n-k)/2)!k!) if n-k >= 0 is even; 0 otherwise. - Emeric Deutsch, Oct 14 2006
G.f.: 1/(1-x*y-x^2/(1-x*y-2*x^2/(1-x*y-3*x^2/(1-x*y-4*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
E.g.f.: exp(y*x + x^2/2). - Geoffrey Critzer, May 08 2012
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n >= 1 T(n,k) = T(n-1,k-1) + (k+1)*T(n-1,k+1). - Peter Luschny, Oct 06 2012
T(n+2,n) = A000217(n+1), n >= 0. - M. F. Hasler, Oct 23 2014
The row polynomials P(n,x) = (a. + x)^n, umbrally evaluated with (a.)^n = a_n = aerated A001147, are an Appell sequence with dP(n,x)/dx = n * P(n-1,x). The umbral compositional inverses (cf. A001147) of these polynomials are given by the same polynomials signed, A066325. - Tom Copeland, Nov 15 2014
From Tom Copeland, Dec 13 2015: (Start)
The odd rows are (2x^2)^n x n! L(n,-1/(2x^2),1/2), and the even, (2x^2)^n n! L(n,-1/(2x^2),-1/2) in sequence with n= 0,1,2,... and L(n,x,a) = Sum_{k=0..n} binomial(n+a,k+a) (-x)^k/k!, the associated Laguerre polynomial of order a. The odd rows are related to A130757, and the even to A176230 and A176231. Other versions of this entry are A122848, A049403, A096713 and A104556, and reversed A100861, A144299, A111924. With each non-vanishing diagonal divided by its initial element A001147(n), this array becomes reversed, aerated A034839.
Create four shift and stretch matrices S1,S2,S3, and S4 with all elements zero except S1(2n,n) = 1 for n >= 1, S2(n,2n) = 1 for n >= 0, S3(2n+1,n) = 1 for n >= 1, and S4(n,2n+1) = 1 for n >= 0. Then this entry's lower triangular matrix is T = Id + S1 * (A176230-Id) * S2 + S3 * (unsigned A130757-Id) * S4 with Id the identity matrix. The sandwiched matrices have infinitesimal generators with the nonvanishing subdiagonals A000384(n>0) and A014105(n>0).
As an Appell sequence, the lowering and raising operators are L = D and R = x + dlog(exp(D^2/2))/dD = x + D, where D = d/dx, L h(n,x) = n h(n-1,x), and R h(n,x) = h(n+1,x), so R^n 1 = h(n,x). The fundamental moment sequence has the e.g.f. e^(t^2/2) with coefficients a(n) = aerated A001147, i.e., h(n,x) = (a. + x)^n, as noted above. The raising operator R as a matrix acting on o.g.f.s (formal power series) is the transpose of the production matrix P below, i.e., (1,x,x^2,...)(P^T)^n (1,0,0,...)^T = h(n,x).
For characterization as a Riordan array and associations to combinatorial structures, see the Barry link and the Yang and Qiao reference. For relations to projective modules, see the Sazdanovic link.
(End)
From the Appell formalism, e^(D^2/2) x^n = h_n(x), the n-th row polynomial listed below, and e^(-D^2/2) x^n = u_n(x), the n-th row polynomial of A066325. Then R = e^(D^2/2) * x * e^(-D^2/2) is another representation of the raising operator, implied by the umbral compositional inverse relation h_n(u.(x)) = x^n. - Tom Copeland, Oct 02 2016
h_n(x) = p_n(x-1), where p_n(x) are the polynomials of A111062, related to the telephone numbers A000085. - Tom Copeland, Jun 26 2018
From Tom Copeland, Jun 06 2021: (Start)
In the power basis x^n, the matrix infinitesimal generator M = A132440^2/2, when acting on a row vector for an o.g.f., is the matrix representation for the differential operator D^2/2.
e^{M} gives the coefficients of the Hermite polynomials of this entry.
The only nonvanishing subdiagonal of M, the second subdiagonal (1,3,6,10,...), gives, aside from the initial 0, the triangular numbers A000217, the number of edges of the n-dimensional simplices with (n+1) vertices. The perfect matchings of these simplices are the aerated odd double factorials A001147 noted above, the moments for the Hermite polynomials.
The polynomials are also generated from A036040 with x[1] = x, x[2] = 1, and the other indeterminates equal to zero. (End)

A122848 Exponential Riordan array (1, x(1+x/2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.
T(n,k) is the number of self-inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012
Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.
Also the inverse Bell transform of the double factorial of odd numbers Product_{k= 0..n-1} (2*k+1) (A001147). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    0    3    1
    0    0    3    6    1
    0    0    0   15   10    1
    0    0    0   15   45   15    1
    0    0    0    0  105  105   21    1
    0    0    0    0  105  420  210   28    1
    0    0    0    0    0  945 1260  378   36    1
From _Gus Wiseman_, Jan 12 2021: (Start)
As noted above, a(n) is the number of set partitions of {1..n} into k singletons or pairs. This is also the number of set partitions of subsets of {1..n} into n - k pairs. In the first case, row n = 5 counts the following set partitions:
  {{1},{2,3},{4,5}}  {{1},{2},{3},{4,5}}  {{1},{2},{3},{4},{5}}
  {{1,2},{3},{4,5}}  {{1},{2},{3,4},{5}}
  {{1,2},{3,4},{5}}  {{1},{2,3},{4},{5}}
  {{1,2},{3,5},{4}}  {{1,2},{3},{4},{5}}
  {{1},{2,4},{3,5}}  {{1},{2},{3,5},{4}}
  {{1},{2,5},{3,4}}  {{1},{2,4},{3},{5}}
  {{1,3},{2},{4,5}}  {{1},{2,5},{3},{4}}
  {{1,3},{2,4},{5}}  {{1,3},{2},{4},{5}}
  {{1,3},{2,5},{4}}  {{1,4},{2},{3},{5}}
  {{1,4},{2},{3,5}}  {{1,5},{2},{3},{4}}
  {{1,4},{2,3},{5}}
  {{1,4},{2,5},{3}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
In the second case, we have:
  {{1,2},{3,4}}  {{1,2}}  {}
  {{1,2},{3,5}}  {{1,3}}
  {{1,2},{4,5}}  {{1,4}}
  {{1,3},{2,4}}  {{1,5}}
  {{1,3},{2,5}}  {{2,3}}
  {{1,3},{4,5}}  {{2,4}}
  {{1,4},{2,3}}  {{2,5}}
  {{1,4},{2,5}}  {{3,4}}
  {{1,4},{3,5}}  {{3,5}}
  {{1,5},{2,3}}  {{4,5}}
  {{1,5},{2,4}}
  {{1,5},{3,4}}
  {{2,3},{4,5}}
  {{2,4},{3,5}}
  {{2,5},{3,4}}
(End)
		

Crossrefs

Row sums are A000085.
Column sums are A001515.
Same as A049403 but with a first column k = 0.
The same set partitions counted by number of pairs are A100861.
Reversing rows gives A111924 (without column k = 0).
A047884 counts standard Young tableaux by size and greatest row length.
A238123 counts standard Young tableaux by size and least row length.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
    (* Second program: *)
    rows = 12;
    t = Join[{1, 1}, Table[0, rows]];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 23 2018,after Peter Luschny *)
    sbs[{}]:={{}};sbs[set:{i_,_}]:=Join@@Function[s,(Prepend[#1,s]&)/@sbs[Complement[set,s]]]/@Cases[Subsets[set],{i}|{i,_}];
    Table[Length[Select[sbs[Range[n]],Length[#]==k&]],{n,0,6},{k,0,n}] (* Gus Wiseman, Jan 12 2021 *)
  • PARI
    {T(n,k)=if(2*kn, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015

Formula

Number triangle T(n,k) = k!*C(n,k)/((2k-n)!*2^(n-k)).
T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006
E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012
Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014
From Daniel Checa, Aug 28 2022: (Start)
E.g.f. for the m-th column: (x^2/2+x)^m/m!.
T(n,k) = T(n-1,k-1) + (n-1)*T(n-2,k-1) for n>1 and k=1..n, T(0,0) = 1. (End)

A000457 Exponential generating function: (1+3*x)/(1-2*x)^(7/2).

Original entry on oeis.org

1, 10, 105, 1260, 17325, 270270, 4729725, 91891800, 1964187225, 45831035250, 1159525191825, 31623414322500, 924984868933125, 28887988983603750, 959493919812553125, 33774185977401870000, 1255977541034632040625
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 10*x + 105*x^2 + 1260*x^3 + 17325*x^4 + 270270*x^5 + ... - _Michael Somos_, Dec 15 2023
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
  • C. Jordan, Calculus of Finite Differences. Eggenberger, Budapest and Röttig-Romwalter, Sopron 1939; Chelsea, NY, 1965, p. 172.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals (1/2)*A000906.
Third column of triangle A001497.
Second column (m=1) of unsigned Laguerre-Sonin a=1/2 triangle |A130757|.
Diagonal k=n-1 of triangle A134991.

Programs

  • Magma
    [Factorial(2*n+3)/(6*Factorial(n)*2^n): n in [0..30]]; // G. C. Greubel, May 15 2018
  • Mathematica
    Table[(2n+3)!/(3!*n!*2^n), {n,0,30}] (* G. C. Greubel, May 15 2018 *)
  • PARI
    for(n=0, 30, print1((2*n+3)!/(3!*n!*2^n), ", ")) \\ G. C. Greubel, May 15 2018
    

Formula

a(n) = (2n+3)!/( 3!*n!*2^n ).
a(n) = (n+1)*(2*n+3)!!/3, n>=0, with (2*n+3)!! = A001147(n+2).
a(n) = Sum_{j=0..n} (j + 1) * Eulerian2(n + 2, n - j). - Peter Luschny, Feb 13 2023

Extensions

More terms from Sascha Kurz, Aug 15 2002

A096713 Irregular triangle T(n,k) of nonzero coefficients of the modified Hermite polynomials (n >= 0 and 0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, -1, 1, -3, 1, 3, -6, 1, 15, -10, 1, -15, 45, -15, 1, -105, 105, -21, 1, 105, -420, 210, -28, 1, 945, -1260, 378, -36, 1, -945, 4725, -3150, 630, -45, 1, -10395, 17325, -6930, 990, -55, 1, 10395, -62370, 51975, -13860, 1485, -66, 1, 135135, -270270, 135135, -25740, 2145, -78, 1
Offset: 0

Views

Author

Eric W. Weisstein, Jul 04 2004

Keywords

Comments

Triangle of nonzero coefficients of matching polynomial of complete graph of order n.
Row sums of absolute values produce A000085 (number of involutions). - Wouter Meeussen, Mar 12 2008
Row n has floor(n/2) + 1 nonzero coefficients. - Robert Israel, Dec 23 2015
Also the nonzero terms of the Bell matrix generated by the sequence [-1,1,0,0,0, ...] read by rows (see second Sage program). For the definition of the Bell matrix see A264428. - Peter Luschny, Jan 20 2016
From Petros Hadjicostas, Oct 28 2019: (Start)
The formulas about the p.d.f. of the standard normal distribution were proved, for example, by Charlier (1905, pp. 13-15), but they were well-known for many years before him. Charlier (1905) has generalized these results to other measures whose n-th moment (around 0) exists for each integer n >= 0.
Different forms (with or without signs) of these coefficients T(n,k) appear in other arrays as well; e.g., see A049403, A104556, A122848, A130757 (odd rows only), etc.
(End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
    1;
    1;
   -1,     1;
   -3,     1;
    3,    -6,    1;
   15,    -10,   1;
  -15,     45, -15,   1;
  -105,   105, -21,   1;
   105,  -420, 210, -28, 1;
   945, -1260, 378, -36, 1;
   ...
The corresponding modified Hermite polynomials are as follows
He_0(x) = 1, He_1(x) = x,
He_2(x) = -1 + x^2, He_3(x) = -3*x + x^3,
He_4(x) = 3 - 6*x^2 + x^4, He_5(x) = 15*x - 10*x^3 + x^5, ...
[Modified by _Petros Hadjicostas_, Oct 28 2019]
		

References

  • C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

Crossrefs

Programs

  • Maple
    A:= NULL:
    for n from 0 to 20 do
      HH:= expand(orthopoly[H](n,x/sqrt(2))/2^(n/2));
      C:= subs(0=NULL, [seq(coeff(HH,x,j),j=0..n)]);
      A:= A, op(C);
    od:
    A; #  Robert Israel, Dec 23 2015
    # Alternatively:
    A096713 := (n, k) -> `if`(2*kA096713(n, k), k=0..n), n=0..13); # Peter Luschny, Dec 24 2015
  • Mathematica
    Table[CoefficientList[HermiteH[n,x/Sqrt[2] ]/2^(n/2),x],{n,0,25}] (* Wouter Meeussen, Mar 12 2008 *)
  • PARI
    T(n,k)=if(k<0||2*k>n, 0, (-1)^(n\2-k)*n!/(n\2-k)!/(n%2+2*k)!/2^(n\2-k)) /* Michael Somos, Jun 04 2005 */
    
  • Python
    from sympy import hermite, Poly, sqrt
    def a(n): return Poly(hermite(n, x/sqrt(2))/2**(n/2), x).coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
  • Sage
    from sage.functions.hypergeometric import closed_form
    def A096713_row(n):
        R. = ZZ[]
        h = hypergeometric([-n/2,(1-n)/2], [], -2*z)
        T = R(closed_form(h)).coefficients()
        return T[::-1]
    for n in range(13): A096713_row(n) # Peter Luschny, Aug 21 2014
    
  • Sage
    # uses[bell_transform from A264428]
    def bell_zero_filter(generator, dim):
        G = [generator(k) for k in srange(dim)]
        row = lambda n: bell_transform(n, G)
        F = [filter(lambda r: r != 0, R) for R in [row(n) for n in srange(dim)]]
        return [i for f in F for i in f]
    print(bell_zero_filter(lambda n: [1,-1][n] if n < 2 else 0, 14)) # Peter Luschny, Jan 20 2016
    

Formula

G.f.: HermiteH(n,x/sqrt(2))/2^(n/2). - Wouter Meeussen, Mar 12 2008
From Robert Israel, Dec 23 2015: (Start)
T(2*m, k) = (-1)^(m+k)*(2*m)!*2^(k-m)/((m-k)!*(2*k)!), k = 0..m.
T(2*m+1, k) = (-1)^(m+k)*(2*m+1)!*2^(k-m)/((m-k)!*(2*k+1)!), k = 0..m. (End)
From Petros Hadjicostas, Oct 28 2019: (Start)
Let He_n(x) be the n-th modified Hermite polynomial (see the references above); i.e., let He_n(x) = Sum_{k = 0..m} T(2*m, k)*x^(2*k) when n = 2*m and He_n(x) = Sum_{k = 0..m} T(2*m+1, k)*x^(2*k+1) when n = 2*m+1.
Let phi(x) = (1/sqrt(2*Pi)) * exp(-x^2/2) be the p.d.f. of a standard normal distribution. Then He_n(x) = (-1)^n * (1/phi(x)) * d^n(phi(x))/dx^n for n >= 0.
We have He_n(x) = x*He_{n-1}(x) - (n-1)*He_{n-2}(x) for n >= 2. (End)

A049403 A triangle of numbers related to triangle A030528; array a(n,m), read by rows (1 <= m <= n).

Original entry on oeis.org

1, 1, 1, 0, 3, 1, 0, 3, 6, 1, 0, 0, 15, 10, 1, 0, 0, 15, 45, 15, 1, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0, 0, 0, 0, 10395, 62370
Offset: 1

Views

Author

Keywords

Comments

a(n,1) = A019590(n) = A008279(1,n). a(n,m) =: S1(-1; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A001497(n-1,m-1) (signed Bessel triangle). The monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Exponential Riordan array [1+x, x(1+x/2)]. T(n,k) = A001498(k+1, n-k). - Paul Barry, Jan 15 2009

Examples

			Triangle a(n,m) (with rows n >= 1 and columns m >= 1) begins as follows:
  1;                 with row polynomial E(1,x) = x;
  1, 1;              with row polynomial E(2,x) = x^2 + x;
  0, 3,  1;          with row polynomial E(3,x) = 3*x^2 + x^3;
  0, 3,  6,   1;     with row polynomial E(4,x) = 3*x^2 + 6*x^3 + x^4;
  0, 0, 15,  10,   1;
  0, 0, 15,  45,  15,   1;
  0, 0,  0, 105, 105,  21,  1;
  0, 0,  0, 105, 420, 210, 28, 1;
  ...
		

Crossrefs

Variations of this array: A096713, A104556, A122848, A130757.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 11}, {k, n}] // Flatten
    (* Second program: *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 13;
    M = BellMatrix[If[#<2, 1, 0]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)

Formula

a(n, m) = n!*A030528(n, m)/(m!*2^(n-m)) for n >= m >= 1.
a(n, m) = (2*m-n+1)*a(n-1, m) + a(n-1, m-1) for n >= m >= 1 with a(n, m) = 0 for n < m, a(n, 0) := 0, and a(1, 1) = 1. [The 0th column does not appear in this array. - Petros Hadjicostas, Oct 28 2019]
E.g.f. for the m-th column: (x*(1 + x/2))^m/m!.
a(n,m) = A122848(n,m). - R. J. Mathar, Jan 14 2011

A104556 Matrix inverse of triangle A001497 of Bessel polynomials, read by rows; essentially the same as triangle A096713 of modified Hermite polynomials.

Original entry on oeis.org

1, -1, 1, 0, -3, 1, 0, 3, -6, 1, 0, 0, 15, -10, 1, 0, 0, -15, 45, -15, 1, 0, 0, 0, -105, 105, -21, 1, 0, 0, 0, 105, -420, 210, -28, 1, 0, 0, 0, 0, 945, -1260, 378, -36, 1, 0, 0, 0, 0, -945, 4725, -3150, 630, -45, 1, 0, 0, 0, 0, 0, -10395, 17325, -6930, 990, -55, 1, 0, 0, 0, 0, 0, 10395, -62370, 51975, -13860, 1485, -66, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2005

Keywords

Comments

Exponential Riordan array [1 - x, x - x^2/2]; cf. A049403. - Peter Bala, Apr 08 2013
Also the Bell transform of (-1)^n if n<2 else 0 and the inverse Bell transform of A001147(n) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Rows begin:
   1;
  -1,  1;
   0, -3,   1;
   0,  3,  -6,    1;
   0,  0,  15,  -10,    1;
   0,  0, -15,   45,  -15,     1;
   0,  0,   0, -105,  105,   -21,     1;
   0,  0,   0,  105, -420,   210,   -28,   1;
   0,  0,   0,    0,  945, -1260,   378, -36,   1;
   0,  0,   0,    0, -945,  4725, -3150, 630, -45, 1; ...
The columns being equal in absolute value to the rows of the matrix inverse A001497:
    1;
    1,   1;
    3,   3,   1;
   15,  15,   6,   1;
  105, 105,  45,  10,  1;
  945, 945, 420, 105, 15, 1; ...
		

Crossrefs

Row sums are found in A001464 (offset 1).
Absolute row sums equal A000085.

Programs

  • Mathematica
    With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - t)*Exp[x*(t - t^2/2)], {t, 0, nmax}, {x, 0, nmax}], t], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 10 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: (-1)^n if n<2 else 0, 9) # Peter Luschny, Jan 19 2016

Formula

E.g.f. : (1 - t)*exp(x*(t - t^2/2)) = 1 + (-1 + x)*t + (-3*x + x^2)*t^2/2! + ... - Peter Bala, Apr 08 2013

A001881 Coefficients of Bessel polynomials y_n (x).

Original entry on oeis.org

1, 21, 378, 6930, 135135, 2837835, 64324260, 1571349780, 41247931725, 1159525191825, 34785755754750, 1109981842719750, 37554385678684875, 1343291487737574375, 50661278966102805000, 2009564065655411265000, 83648104232906493905625, 3646073249210806587298125
Offset: 5

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001518.
(1/4) the coefficient of x^2 of polynomials in A098503.
Column 5 of triangle A001497.
Third column (m=2) of Laguerre-Sonin a=1/2 triangle A130757.

Programs

  • Magma
    [Factorial(2*n-5)/(120*Factorial(n-5)*2^(n-5) ): n in [5..30]]; // Vincenzo Librandi, Aug 14 2017
  • Mathematica
    With[{nn = 50}, CoefficientList[Series[x*(1 + 3*x/2)/(1 - 2*x)^(9/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(x*(1 + 3*x/2)/(1 - 2*x)^(9/2))) \\ G. C. Greubel, Aug 13 2017
    

Formula

a(n) = (2n-5)!/( 5!*(n-5)!*2^(n-5) ).
a(n) = binomial(n-3,2)*(2*n-5)!!/5!!, n >= 5, with (2*n-5)!! = A001147(n-2).
E.g.f.: x*(1 + 3*x/2)/(1 - 2*x)^(9/2), with offset 1. - G. C. Greubel, Aug 13 2017
G.f.: t^5 * hypergeometric2F0(3, 7/2; -; 2*t) = t^5 + 21*t^6 + .... - G. C. Greubel, Aug 16 2017

A130563 Fourth column (m=3) of the Laguerre-Sonin a=1/2 coefficient triangle.

Original entry on oeis.org

1, 36, 990, 25740, 675675, 18378360, 523783260, 15713497800, 496939367925, 16564645597500, 581419060472250, 21459648959248500, 831561397170879375, 33774185977401870000, 1435402904039579475000, 63731888939357328690000
Offset: 3

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Crossrefs

Columns m=0, 1, 2 from A001147, A000457, A001881.
Eighth right hand column of triangle A001498. - Johannes W. Meijer, Oct 16 2009

Programs

  • Magma
    [Round(Factorial(n)*2^(n-3)*Gamma(n+3/2)/(6*Gamma(n-2)*Gamma(9/2))): n in [3..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[n!*(2^(n - 3))*Binomial[n + 1/2, n - 3]/3!, {n, 3, 50}] (* G. C. Greubel, May 12 2018 *)
  • PARI
    for(n=3, 20, print1(n!*(2^(n-3))*binomial(n+1/2, n-3)/3!, ", ")) \\ G. C. Greubel, May 12 2018
    

Formula

a(n) = n!*(2^(n-3))*binomial(n+1/2,n-3)/3!, n >= 3.
a(n) = binomial(n,3)*(2*n+1)!!/7!!, with (2*n+1)!! = A001147(n+1).
a(n) = -A130757(n,3), n >= 3.
Showing 1-10 of 11 results. Next