A049455 Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.
0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9
Offset: 1
Examples
0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456 The 0,1 version of Stern's diatomic array (cf. A002487) begins: 0,1, 0,1,1, 0,1,1,2,1, 0,1,1,2,1,3,2,3,1, 0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1, 0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1, ...
References
- Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.
- J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
- W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 8204 terms from Reinhard Zumkeller)
- C. Giuli and R. Giuli, A primer on Stern's diatomic sequence, Fib. Quart., 17 (1979), 103-108, 246-248 and 318-320 (but beware errors).
- Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
- M. Shrader-Frechette, Modified Farey sequences and continued fractions, Math. Mag., 54 (1981), 60-63.
- N. J. A. Sloane, Stern-Brocot or Farey Tree
- Index entries for sequences related to Stern's sequences
Crossrefs
Programs
-
Haskell
import Data.List (transpose) import Data.Ratio ((%), numerator, denominator) a049455 n k = a049455_tabf !! (n-1) !! (k-1) a049455_row n = a049455_tabf !! (n-1) a049455_tabf = map (map numerator) $ iterate (\row -> concat $ transpose [row, zipWith (+/+) row $ tail row]) [0, 1] where u +/+ v = (numerator u + numerator v) % (denominator u + denominator v) -- Reinhard Zumkeller, Apr 02 2014
-
Mathematica
f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* Robert G. Wilson v, Nov 10 2019 *)
-
PARI
mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y)); newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1]));); concat(rowb, rowa[#rowa]);} rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)););} \\ Michel Marcus, Apr 03 2019
Formula
Row 1 is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000
Comments