cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049455 Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9
Offset: 1

Views

Author

Keywords

Comments

Stern's diatomic array read by rows (version 4, the 0,1 version).
This sequence divided by A049456 gives another version of the Stern-Brocot tree.
Row n has length 2^n + 1.
Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.
Largest term of n-th row = A000045(n), Fibonacci numbers. - Reinhard Zumkeller, Apr 02 2014

Examples

			0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
The 0,1 version of Stern's diatomic array (cf. A002487) begins:
0,1,
0,1,1,
0,1,1,2,1,
0,1,1,2,1,3,2,3,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1,
...
		

References

  • Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.

Crossrefs

Row sums are A007051.
Cf. A000051 (row lengths), A293165 (distinct terms).

Programs

  • Haskell
    import Data.List (transpose)
    import Data.Ratio ((%), numerator, denominator)
    a049455 n k = a049455_tabf !! (n-1) !! (k-1)
    a049455_row n = a049455_tabf !! (n-1)
    a049455_tabf = map (map numerator) $ iterate
       (\row -> concat $ transpose [row, zipWith (+/+) row $ tail row]) [0, 1]
       where u +/+ v = (numerator u + numerator v) %
                       (denominator u + denominator v)
    -- Reinhard Zumkeller, Apr 02 2014
    
  • Mathematica
    f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* Robert G. Wilson v, Nov 10 2019 *)
  • PARI
    mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y));
    newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1]));); concat(rowb, rowa[#rowa]);}
    rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)););} \\ Michel Marcus, Apr 03 2019

Formula

Row 1 is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000