A049459 Generalized Stirling number triangle of first kind.
1, -4, 1, 20, -9, 1, -120, 74, -15, 1, 840, -638, 179, -22, 1, -6720, 5944, -2070, 355, -30, 1, 60480, -60216, 24574, -5265, 625, -39, 1, -604800, 662640, -305956, 77224, -11515, 1015, -49, 1, 6652800, -7893840, 4028156, -1155420, 203889
Offset: 0
Examples
1; -4, 1; 20, -9, 1; -120, 74, -15, 1; 840, -638, 179, -22, 1;
References
- Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
Crossrefs
Programs
-
Haskell
a049459 n k = a049459_tabl !! n !! k a049459_row n = a049459_tabl !! n a049459_tabl = map fst $ iterate (\(row, i) -> (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 4) -- Reinhard Zumkeller, Mar 11 2014
-
Maple
A049459_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x+4, n)), x, k), k=0..n): seq(print(A049459_row(n)),n=0..8); # Peter Luschny, May 16 2013
-
Mathematica
a[n_, m_] /; 0 <= m <= n := a[n, m] = a[n-1, m-1] - (n+3)*a[n-1, m]; a[n_, m_] /; n < m = 0; a[_, -1] = 0; a[0, 0] = 1; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
Formula
a(n, m)= a(n-1, m-1) - (n+3)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
Triangle (signed) = [ -4, -1, -5, -2, -6, -3, -7, -4, -8, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [4, 1, 5, 2, 6, 3, 7, 4, 8, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938 (unsigned version in A143493).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,4), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008
Extensions
Second formula corrected by Philippe Deléham, Nov 09 2008
Comments