cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049464 Number of n-photon quenched skeletons.

Original entry on oeis.org

1, 1, 1, 7, 63, 729, 10113, 161935, 2923135, 58547761, 1286468225, 30747331223, 793992877247, 22031281255689, 653827064820993, 20670172958564127, 693662602935500031, 24632233419065156193, 922938914156271368961
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 19; y[] = 0; Do[y[x] = (x + (1 + x)*y[x]^2 + 2*x*y[x]*y'[x])/(1 + 2*x) + O[x]^terms // Normal, terms]; CoefficientList[1 + y[x], x] (* Jean-François Alcover, Aug 14 2013, updated Jan 12 2018 *)
  • PARI
    seq(N) = {
      my(s=Ser(concat(1, vector(N, n, (2*n)!/(2^n*n!)))), g=(1/s - 1/s^2)/x);
      Vec(1 - 1/subst(g, 'x, serreverse(x*g^2*s^2)));
    };
    concat(1, seq(19))
    \\ test: y='x*Ser(seq(200)); 0==2*x*y*y' + (1+x)*y^2 - (2*x+1)*y + x
    \\ Gheorghe Coserea, Oct 12 2017

Formula

Reference gives recurrence.
From Gheorghe Coserea, Oct 22 2017: (Start)
a(n) ~ 2*exp(-2)/sqrt(Pi) * n^(1/2) * 2^n * n! * (1 - 21/(8*n) - 87/(128*n^2) + O(1/n^3)). (see Borinsky link)
For n > 0 we have a(n) == 1 (mod 8) if n mod 8 in {1,2,5,6}, otherwise a(n) == 7 (mod 8).
G.f. y(x) satisfies (with a(0)=0): g = 1 + g*y(x*g^2*s^2), where s = A001147(x) and g = A005416(x). (eqn. (7) in Broadhurst link)
0 = 2*x*y*deriv(y,x) + (1+x)*y^2 - (2*x+1)*y + x.
(End)