cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A005416 Vertex diagrams of order 2n.

Original entry on oeis.org

1, 1, 6, 50, 518, 6354, 89782, 1435330, 25625910, 505785122, 10944711398, 257834384850, 6572585595622, 180334118225650, 5300553714899094, 166206234856979810, 5538980473666776854, 195527829569946627138, 7288988096561232432070
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 6*x^2 + 50*x^3 + 518*x^4 + 6354*x^5 + 89782*x^6 + 1435330*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    m = 19; s[x_] = Sum[(2*n)!/(2^n*n!)*x^n, {n, 0, m}]; gf[x_] = (s[x] - 1)/(s[x]^2*x); Most[CoefficientList[Series[gf[x], {x, 0, m}], x]] (* Jean-François Alcover, Aug 31 2011, after g.f. *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum( k=0, n+1, (2*k)! / k! /2^k * x^k, x^2 * O(x^n)); polcoeff( (A - 1) / (x * A^2), n))}; /* Michael Somos, Oct 11 2006 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (2*n - 1) * A[n])}; /* Michael Somos, Jul 24 2011 */

Formula

Let s_n = (2*n)!/(2^n*n!) (A001147), S(x) = Sum_{n >= 0} s_n*x^n; sequence has g.f. A(x) satisfying 1 - 1/S(x) = x*A(x)*S(x).
a(n) = (2*n - 1) * A000698(n). [Martin and Kearney]

A286797 Row sums of A286796.

Original entry on oeis.org

1, 2, 10, 82, 898, 12018, 187626, 3323682, 65607682, 1424967394, 33736908874, 864372576626, 23825543471234, 703074672632018, 22118247888976170, 739081808704195650, 26146116129400483842, 976382058777174451650, 38386296866727499728522, 1584986693941237056394386
Offset: 0

Views

Author

Gheorghe Coserea, May 21 2017

Keywords

Crossrefs

Cf. A286796.

Programs

  • Mathematica
    max = 20; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
    a[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t] // Total;
    Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);
    Vec(A286796_ser(20,1))
    
  • PARI
    A049464_ser(N) = {  \\ for A049464(0)=0
      my(s=Ser(concat(1, vector(N+1, n, (2*n)!/(2^n*n!)))), g=(1/s - 1/s^2)/x);
      1 - 1/subst(g, 'x, serreverse(x*g^2*s^2));
    };
    A286797_ser(N) = my(q=A049464_ser(N)); q/(x-x*q);
    Vec(A286797_ser(20))

Formula

a(n) = Sum_{k=0..n} A286796(n,k).
a(n) ~ 2^(n + 5/2) * n^(n+2) / exp(n+2). - Vaclav Kotesovec, Mar 08 2022

A286795 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 4, 3, 27, 31, 5, 248, 357, 117, 7, 2830, 4742, 2218, 314, 9, 38232, 71698, 42046, 9258, 690, 11, 593859, 1216251, 837639, 243987, 30057, 1329, 13, 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15, 202601898, 472751962, 404979234, 166620434, 35456432, 3857904, 196532, 3812, 17, 4342263000, 10651493718, 9869474106, 4561150162, 1149976242, 160594860, 11946360, 426852, 5904, 19
Offset: 0

Views

Author

Gheorghe Coserea, May 21 2017

Keywords

Comments

Row n>0 contains n terms.
"The series expansion of the solution counts skeleton vertex diagrams with dressed propagators and bare interactions." (see G^2v-skeleton expansion in Molinari link)

Examples

			A(x;t) = 1 + x + (4 + 3*t)*x^2 + (27 + 31*t + 5*t^2)*x^3 + ...
Triangle starts:
n\k  [0]       [1]       [2]       [3]      [4]      [5]    [6]   [7]
[0]  1;
[1]  1;
[2]  4,        3;
[3]  27,       31,       5;
[4]  248,      357,      117,      7;
[5]  2830,     4742,     2218,     314,     9;
[6]  38232,    71698,    42046,    9258,    690,     11;
[7]  593859,   1216251,  837639,   243987,  30057,   1329,  13;
[8]  10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15;
[9] ...
		

Crossrefs

Programs

  • Mathematica
    max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = ((1 + x*(1 + 2 t + x t^2) y0[x, t]^2 + t (1 - t)*x^2*y0[x, t]^3 + 2 x^2 y0[x, t] D[y0[x, t], x]))/(1 + 2 x*t) + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
    row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
    Table[row[n], {n, 0, max - 1}] // Flatten (* Jean-François Alcover, May 23 2017, adapted from PARI *)
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    concat(apply(p->Vecrev(p), Vec(A286795_ser(11))))
    \\ test: y=A286795_ser(50); 0 == 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*y'

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies 0 = 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*deriv(y,x), with y(0;t)=1, where P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A000699(n+1) = T(n,0), 1 = P_n(-1), A049464(n+1) = P_n(1).

A286800 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 2, 7, 6, 63, 74, 10, 729, 974, 254, 8, 10113, 15084, 5376, 406, 161935, 264724, 117424, 14954, 320, 2923135, 5163276, 2697804, 481222, 23670, 112, 58547761, 110483028, 65662932, 14892090, 1186362, 21936, 1286468225, 2570021310, 1695874928, 461501018, 51034896, 1866986, 11264, 30747331223, 64547199082, 46461697760, 14603254902, 2055851560, 116329886, 1905888, 2560
Offset: 1

Views

Author

Gheorghe Coserea, May 22 2017

Keywords

Comments

Row n>0 contains floor(2*(n+1)/3) terms.

Examples

			A(x;t) = x + (1 + 2*t)*x^2 + (7 + 6*t)*x^3 + (63 + 74*t + 10*t^2)*x^4 + ...
Triangle starts:
n\k  [0]       [1]        [2]       [3]       [4]      [5]
[1]  1;
[2]  1,        2;
[3]  7,        6;
[4]  63,       74,        10;
[5]  729,      974,       254,      8;
[6]  10113,    15084,     5376,     406;
[7]  161935,   264724,    117424,   14954,    320;
[8]  2923135,  5163276,   2697804,  481222,   23670,   112;
[9]  58547761, 110483028, 65662932, 14892090, 1186362, 21936;
[10] ...
		

Crossrefs

Programs

  • Mathematica
    max = 12; y0[0, ] = y1[0, ] = 0; y0[x_, t_] = x; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1/(-1 + y0[x, t]))*x*(-1 - y0[x, t]^2 - 2*y0[x, t]*(-1 + D[y0[x, t], x]) + t*x*(-1 + y0[x, t])*(2*(-1 + y0[x, t])^2 + (x*(-1 + y0[x, t]) + y0[x, t])*D[y0[x, t], x])) + O[x]^n]; y0[x_, t_] = y1[x, t]];
    row[n_] := CoefficientList[SeriesCoefficient[y0[x, t], {x, 0, n}], t];
    Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    A286798_ser(N,t='t) = {
      my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
    };
    A286800_ser(N, t='t) = {
      my(v = A286798_ser(N,t)); 1-1/subst(v, 'x, serreverse(x*v^2));
    };
    concat(apply(p->Vecrev(p), Vec(A286800_ser(12))))
    \\ test: y=A286800_ser(50); x*y' == (1-y) * (2*t*x^2*(1-y)^2 + x*(1-y) - y) / (t*x^2*(1-y)^2 - t*x*y*(1-y) - 2*y)

Formula

y(x;t) = Sum_{n>0} P_n(t)*x^n satisfies x*deriv(y,x) = (1-y) * (2*t*x^2*(1-y)^2 + x*(1-y) - y) / (t*x^2*(1-y)^2 - t*x*y*(1-y) - 2*y), with y(0;t) = 0, where P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n>0.
A049464(n) = T(n,0), P_n(-1) = (-1)^(n-1), A287029(n) = P_n(1).

A287029 Row sums of A286800.

Original entry on oeis.org

1, 3, 13, 147, 1965, 30979, 559357, 11289219, 250794109, 6066778627, 158533572861, 4447703062787, 133309656009469, 4251322261512195, 143749952968507389, 5137921526511802371, 193589838004887201789, 7670544451820808601603, 318892867844484240154621, 13881730766388536085356547
Offset: 1

Views

Author

Gheorghe Coserea, May 22 2017

Keywords

Examples

			A(x) = x + 3*x^2 + 13*x^3 + 147*x^4 + 1965*x^5 + 30979*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 20; y[, ] = 0; Do[y[x_, t_] = (1/(-1 + y[x, t])) x (-1 - y[x, t]^2 - 2 y[x, t] (-1 + D[y[x, t], x]) + t x (-1 + y[x, t]) (2 (-1 + y[x, t])^2 + (x (-1 + y[x, t]) + y[x, t]) D[y[x, t], x])) + O[x]^n // Normal // Simplify, {n, terms+1}];
    Total[CoefficientList[#, t]]& /@ CoefficientList[y[x, t], x] // Rest
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    A286798_ser(N,t='t) = {
      my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
    };
    A286800_ser(N, t='t) = {
      my(v = A286798_ser(N,t)); 1-1/subst(v, 'x, serreverse(x*v^2));
    };
    A287029_ser(N) = A286800_ser(N+1, 1);
    Vec(A287029_ser(20))

Formula

a(n) = Sum_{k=0..floor((2*n-1)/3)} A286800(n,k) for n>=1.
a(n) ~ 4*exp(-7/2)/sqrt(Pi) * n^(3/2) * 2^n * n! * (1 - 15/(8*n) - 503/(128*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 21 2017

A287039 Row sums of A286782.

Original entry on oeis.org

1, 1, 9, 100, 1323, 20088, 342430, 6461208, 133618275, 3006094768, 73139285178, 1914937983000, 53720914023150, 1608612191370000, 51235727245542684, 1730349877484075120, 61783682196714238755, 2326122843950925857376, 92117389831885545623650, 3828375469597215729851928
Offset: 0

Views

Author

Gheorghe Coserea, May 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    max = 21; (* B(x) is A000699(x) *) B[_] = 0;
    Do[B[x_] = x + x^2 D[B[x]^2/x, x] + O[x]^max // Normal, max];
    Join[{1}, Drop[CoefficientList[(1-x/B[x])/x + O[x]^max, x], -2] Table[2n-1, {n, max-2}]] (* Jean-François Alcover, Oct 25 2018, from PARI *)
  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    A286794_seq(N) = Vec((1-1/Ser(A000699_seq(N+1)))/x);
    A287039_seq(N) = {
      my(s = A286794_seq(N));
      concat(1, vector(#s, n, (2*n-1)*s[n]));
    };
    A287039_seq(19)

Formula

a(n) ~ 4*exp(-1)/sqrt(Pi) * n^(3/2) * 2^n * n! * (1 - 19/(8*n) - 23/(128*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 21 2017

A005414 Feynman diagrams of order 2n with vertex skeletons.

Original entry on oeis.org

1, 1, 13, 93, 1245, 18093, 308605, 5887453, 124221373, 2864305277, 71589605885, 1927010749181, 55572839581437, 1709604517055229, 55893262628149245, 1935654236127347709, 70799043456576835581, 2727771901780930132989, 110438840436968476274685, 4688223534904569925386237
Offset: 1

Views

Author

Keywords

References

  • P. Cvitanovic, B. Lautrup and R. B. Pearson, Number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    seq[nn_] := Module[{x, y=0, y1=0, n=1}, While[n++; True, y1 = x^2 + x^4 + 2x^6 - 3x^2 y + x^4 (-y + x D[y, x]/2) - x^6 (8y + x D[y, x]/2) + y^2 + x y D[y, x] + (x^2 - x^4)(3y^2 + 3/2 x y D[y, x]) + x^6 (12y^2 + 3/2 x y D[y, x]) - x^2 (y^3 + 3/2 x y^2 D[y, x]) + x^4 (5y^3 + 3/2 x y^2 D[y, x]) - x^6 (8y^3 + 3/2 x y^2 D[y, x]) + (-x^4 + x^6)(2y^4 + 1/2 x y^3 D[y, x]) + O[x]^(2nn+1); If[y1 == y, Break[]]; y = y1]; CoefficientList[y, x^2]] // Rest;
    seq[20] (* Jean-François Alcover, Oct 05 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(2*N+1)), y=0, y1=0, n=1);
      while (n++,
      y1 = x^2 + x^4 + 2*x^6 - 3*x^2*y + x^4*(-y + 1/2*x*y') +
           -x^6*(8*y + 1/2*x*y') + y^2 + x*y*y' +
           (x^2 - x^4)*(3*y^2 + 3/2*x*y*y') + x^6*(12*y^2 + 3/2*x*y*y') +
           -x^2*(y^3 + 1/2*x*3*y^2*y') + x^4*(5*y^3 + 1/2*x*3*y^2*y') +
           -x^6*(8*y^3 + 1/2*x*3*y^2*y') + (-x^4+x^6)*(2*y^4 + 1/8*x*4*y^3*y');
      if (y1 == y, break); y=y1);
      vector(N, n, polcoeff(y, 2*n));
    };
    seq(20) \\ Gheorghe Coserea, Oct 17 2017

Formula

a(n) ~ 4*exp(-5/2)/Pi * n * 2^n * n! * (1 - 9/(4*n) - 67/(32*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 19 2017

Extensions

More terms from Gheorghe Coserea, Oct 17 2017

A294158 Row sums of A291844.

Original entry on oeis.org

1, 1, 6, 52, 602, 8223, 128917, 2273716, 44509914, 957408649, 22449011336, 570032756328, 15587503694363, 456793916757139, 14284890417759141, 474896318288651220, 16726743380843538668, 622282429409944248297, 24385251974172090147514, 1004017088910699487855180
Offset: 0

Views

Author

Gheorghe Coserea, Oct 24 2017

Keywords

Crossrefs

Cf. A049464(y), A287039(x), A286799(z), A287029(u), A291844.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1,t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    Vec(A291844_ser(20,t=1))

Formula

a(n) = Sum_{k=0..floor((2*n-1)/3)} A291844(n,k), n > 0.
Showing 1-8 of 8 results.