A005416
Vertex diagrams of order 2n.
Original entry on oeis.org
1, 1, 6, 50, 518, 6354, 89782, 1435330, 25625910, 505785122, 10944711398, 257834384850, 6572585595622, 180334118225650, 5300553714899094, 166206234856979810, 5538980473666776854, 195527829569946627138, 7288988096561232432070
Offset: 0
G.f. = 1 + x + 6*x^2 + 50*x^3 + 518*x^4 + 6354*x^5 + 89782*x^6 + 1435330*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. J. Broadhurst, Four-loop Dyson-Schwinger-Johnson anatomy, arXiv:hep-ph/9909336, 1999.
- P. Cvitanovic, Asymptotic estimates and gauge invariance, Nuclear Phys. B 127 (1977), 176-188.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 292.
-
m = 19; s[x_] = Sum[(2*n)!/(2^n*n!)*x^n, {n, 0, m}]; gf[x_] = (s[x] - 1)/(s[x]^2*x); Most[CoefficientList[Series[gf[x], {x, 0, m}], x]] (* Jean-François Alcover, Aug 31 2011, after g.f. *)
-
{a(n) = my(A); if( n<0, 0, A = sum( k=0, n+1, (2*k)! / k! /2^k * x^k, x^2 * O(x^n)); polcoeff( (A - 1) / (x * A^2), n))}; /* Michael Somos, Oct 11 2006 */
-
{a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (2*n - 1) * A[n])}; /* Michael Somos, Jul 24 2011 */
Original entry on oeis.org
1, 2, 10, 82, 898, 12018, 187626, 3323682, 65607682, 1424967394, 33736908874, 864372576626, 23825543471234, 703074672632018, 22118247888976170, 739081808704195650, 26146116129400483842, 976382058777174451650, 38386296866727499728522, 1584986693941237056394386
Offset: 0
-
max = 20; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
a[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t] // Total;
Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);
Vec(A286796_ser(20,1))
-
A049464_ser(N) = { \\ for A049464(0)=0
my(s=Ser(concat(1, vector(N+1, n, (2*n)!/(2^n*n!)))), g=(1/s - 1/s^2)/x);
1 - 1/subst(g, 'x, serreverse(x*g^2*s^2));
};
A286797_ser(N) = my(q=A049464_ser(N)); q/(x-x*q);
Vec(A286797_ser(20))
A286795
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 4, 3, 27, 31, 5, 248, 357, 117, 7, 2830, 4742, 2218, 314, 9, 38232, 71698, 42046, 9258, 690, 11, 593859, 1216251, 837639, 243987, 30057, 1329, 13, 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15, 202601898, 472751962, 404979234, 166620434, 35456432, 3857904, 196532, 3812, 17, 4342263000, 10651493718, 9869474106, 4561150162, 1149976242, 160594860, 11946360, 426852, 5904, 19
Offset: 0
A(x;t) = 1 + x + (4 + 3*t)*x^2 + (27 + 31*t + 5*t^2)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 1;
[2] 4, 3;
[3] 27, 31, 5;
[4] 248, 357, 117, 7;
[5] 2830, 4742, 2218, 314, 9;
[6] 38232, 71698, 42046, 9258, 690, 11;
[7] 593859, 1216251, 837639, 243987, 30057, 1329, 13;
[8] 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = ((1 + x*(1 + 2 t + x t^2) y0[x, t]^2 + t (1 - t)*x^2*y0[x, t]^3 + 2 x^2 y0[x, t] D[y0[x, t], x]))/(1 + 2 x*t) + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
Table[row[n], {n, 0, max - 1}] // Flatten (* Jean-François Alcover, May 23 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
concat(apply(p->Vecrev(p), Vec(A286795_ser(11))))
\\ test: y=A286795_ser(50); 0 == 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*y'
A286800
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 2, 7, 6, 63, 74, 10, 729, 974, 254, 8, 10113, 15084, 5376, 406, 161935, 264724, 117424, 14954, 320, 2923135, 5163276, 2697804, 481222, 23670, 112, 58547761, 110483028, 65662932, 14892090, 1186362, 21936, 1286468225, 2570021310, 1695874928, 461501018, 51034896, 1866986, 11264, 30747331223, 64547199082, 46461697760, 14603254902, 2055851560, 116329886, 1905888, 2560
Offset: 1
A(x;t) = x + (1 + 2*t)*x^2 + (7 + 6*t)*x^3 + (63 + 74*t + 10*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[1] 1;
[2] 1, 2;
[3] 7, 6;
[4] 63, 74, 10;
[5] 729, 974, 254, 8;
[6] 10113, 15084, 5376, 406;
[7] 161935, 264724, 117424, 14954, 320;
[8] 2923135, 5163276, 2697804, 481222, 23670, 112;
[9] 58547761, 110483028, 65662932, 14892090, 1186362, 21936;
[10] ...
-
max = 12; y0[0, ] = y1[0, ] = 0; y0[x_, t_] = x; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1/(-1 + y0[x, t]))*x*(-1 - y0[x, t]^2 - 2*y0[x, t]*(-1 + D[y0[x, t], x]) + t*x*(-1 + y0[x, t])*(2*(-1 + y0[x, t])^2 + (x*(-1 + y0[x, t]) + y0[x, t])*D[y0[x, t], x])) + O[x]^n]; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[SeriesCoefficient[y0[x, t], {x, 0, n}], t];
Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286798_ser(N,t='t) = {
my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
A286800_ser(N, t='t) = {
my(v = A286798_ser(N,t)); 1-1/subst(v, 'x, serreverse(x*v^2));
};
concat(apply(p->Vecrev(p), Vec(A286800_ser(12))))
\\ test: y=A286800_ser(50); x*y' == (1-y) * (2*t*x^2*(1-y)^2 + x*(1-y) - y) / (t*x^2*(1-y)^2 - t*x*y*(1-y) - 2*y)
Original entry on oeis.org
1, 3, 13, 147, 1965, 30979, 559357, 11289219, 250794109, 6066778627, 158533572861, 4447703062787, 133309656009469, 4251322261512195, 143749952968507389, 5137921526511802371, 193589838004887201789, 7670544451820808601603, 318892867844484240154621, 13881730766388536085356547
Offset: 1
A(x) = x + 3*x^2 + 13*x^3 + 147*x^4 + 1965*x^5 + 30979*x^6 + ...
-
terms = 20; y[, ] = 0; Do[y[x_, t_] = (1/(-1 + y[x, t])) x (-1 - y[x, t]^2 - 2 y[x, t] (-1 + D[y[x, t], x]) + t x (-1 + y[x, t]) (2 (-1 + y[x, t])^2 + (x (-1 + y[x, t]) + y[x, t]) D[y[x, t], x])) + O[x]^n // Normal // Simplify, {n, terms+1}];
Total[CoefficientList[#, t]]& /@ CoefficientList[y[x, t], x] // Rest
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286798_ser(N,t='t) = {
my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
A286800_ser(N, t='t) = {
my(v = A286798_ser(N,t)); 1-1/subst(v, 'x, serreverse(x*v^2));
};
A287029_ser(N) = A286800_ser(N+1, 1);
Vec(A287029_ser(20))
Original entry on oeis.org
1, 1, 9, 100, 1323, 20088, 342430, 6461208, 133618275, 3006094768, 73139285178, 1914937983000, 53720914023150, 1608612191370000, 51235727245542684, 1730349877484075120, 61783682196714238755, 2326122843950925857376, 92117389831885545623650, 3828375469597215729851928
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..302
- Michael Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, arXiv:1703.00840 [hep-th], 2017.
- Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005.
- Luca G. Molinari, Nicola Manini, Enumeration of many-body skeleton diagrams, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
-
max = 21; (* B(x) is A000699(x) *) B[_] = 0;
Do[B[x_] = x + x^2 D[B[x]^2/x, x] + O[x]^max // Normal, max];
Join[{1}, Drop[CoefficientList[(1-x/B[x])/x + O[x]^max, x], -2] Table[2n-1, {n, max-2}]] (* Jean-François Alcover, Oct 25 2018, from PARI *)
-
A000699_seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
};
A286794_seq(N) = Vec((1-1/Ser(A000699_seq(N+1)))/x);
A287039_seq(N) = {
my(s = A286794_seq(N));
concat(1, vector(#s, n, (2*n-1)*s[n]));
};
A287039_seq(19)
A005414
Feynman diagrams of order 2n with vertex skeletons.
Original entry on oeis.org
1, 1, 13, 93, 1245, 18093, 308605, 5887453, 124221373, 2864305277, 71589605885, 1927010749181, 55572839581437, 1709604517055229, 55893262628149245, 1935654236127347709, 70799043456576835581, 2727771901780930132989, 110438840436968476274685, 4688223534904569925386237
Offset: 1
- P. Cvitanovic, B. Lautrup and R. B. Pearson, Number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq[nn_] := Module[{x, y=0, y1=0, n=1}, While[n++; True, y1 = x^2 + x^4 + 2x^6 - 3x^2 y + x^4 (-y + x D[y, x]/2) - x^6 (8y + x D[y, x]/2) + y^2 + x y D[y, x] + (x^2 - x^4)(3y^2 + 3/2 x y D[y, x]) + x^6 (12y^2 + 3/2 x y D[y, x]) - x^2 (y^3 + 3/2 x y^2 D[y, x]) + x^4 (5y^3 + 3/2 x y^2 D[y, x]) - x^6 (8y^3 + 3/2 x y^2 D[y, x]) + (-x^4 + x^6)(2y^4 + 1/2 x y^3 D[y, x]) + O[x]^(2nn+1); If[y1 == y, Break[]]; y = y1]; CoefficientList[y, x^2]] // Rest;
seq[20] (* Jean-François Alcover, Oct 05 2018, after Gheorghe Coserea *)
-
seq(N) = {
my(x='x+O('x^(2*N+1)), y=0, y1=0, n=1);
while (n++,
y1 = x^2 + x^4 + 2*x^6 - 3*x^2*y + x^4*(-y + 1/2*x*y') +
-x^6*(8*y + 1/2*x*y') + y^2 + x*y*y' +
(x^2 - x^4)*(3*y^2 + 3/2*x*y*y') + x^6*(12*y^2 + 3/2*x*y*y') +
-x^2*(y^3 + 1/2*x*3*y^2*y') + x^4*(5*y^3 + 1/2*x*3*y^2*y') +
-x^6*(8*y^3 + 1/2*x*3*y^2*y') + (-x^4+x^6)*(2*y^4 + 1/8*x*4*y^3*y');
if (y1 == y, break); y=y1);
vector(N, n, polcoeff(y, 2*n));
};
seq(20) \\ Gheorghe Coserea, Oct 17 2017
Original entry on oeis.org
1, 1, 6, 52, 602, 8223, 128917, 2273716, 44509914, 957408649, 22449011336, 570032756328, 15587503694363, 456793916757139, 14284890417759141, 474896318288651220, 16726743380843538668, 622282429409944248297, 24385251974172090147514, 1004017088910699487855180
Offset: 0
-
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1;); y;
};
A291844_ser(N, t='t) = {
my(z = A291843_ser(N+1,t));
((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
};
Vec(A291844_ser(20,t=1))
Showing 1-8 of 8 results.
Comments