A049464
Number of n-photon quenched skeletons.
Original entry on oeis.org
1, 1, 1, 7, 63, 729, 10113, 161935, 2923135, 58547761, 1286468225, 30747331223, 793992877247, 22031281255689, 653827064820993, 20670172958564127, 693662602935500031, 24632233419065156193, 922938914156271368961
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..202
- Michael Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, arXiv:1703.00840 [hep-th], 2017.
- D. J. Broadhurst, Four-loop Dyson-Schwinger-Johnson anatomy, arXiv:hep-ph/9909336, 1999.
- Ali Assem Mahmoud, An Asymptotic Expansion for the Number of 2-Connected Chord Diagrams, arXiv:2009.12688 [math.CO], 2020.
- Ali Assem Mahmoud, Chord Diagrams and the Asymptotic Analysis of QED-type Theories, arXiv:2011.04291 [hep-th], 2020.
- Ali Assem Mahmoud, An asymptotic expansion for the number of two-connected chord diagrams, J. Math. Phys. (2023) Vol. 64, 122301. See Section V.
- Luca G. Molinari and Nicola Manini, Enumeration of many-body skeleton diagrams, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
-
terms = 19; y[] = 0; Do[y[x] = (x + (1 + x)*y[x]^2 + 2*x*y[x]*y'[x])/(1 + 2*x) + O[x]^terms // Normal, terms]; CoefficientList[1 + y[x], x] (* Jean-François Alcover, Aug 14 2013, updated Jan 12 2018 *)
-
seq(N) = {
my(s=Ser(concat(1, vector(N, n, (2*n)!/(2^n*n!)))), g=(1/s - 1/s^2)/x);
Vec(1 - 1/subst(g, 'x, serreverse(x*g^2*s^2)));
};
concat(1, seq(19))
\\ test: y='x*Ser(seq(200)); 0==2*x*y*y' + (1+x)*y^2 - (2*x+1)*y + x
\\ Gheorghe Coserea, Oct 12 2017
A291844
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 4, 2, 29, 23, 274, 292, 36, 3145, 4068, 994, 16, 42294, 62861, 22250, 1512, 651227, 1075562, 484840, 61027, 1060, 11295242, 20275944, 10867381, 1977879, 93188, 280, 217954807, 418724047, 255929070, 59896915, 4823178, 80632, 4632600152, 9418874022, 6387031115, 1798212190, 204846125, 7410676, 37056, 107572674851, 229535650138, 169414005231, 55017177704, 8022471066, 463514918, 7255380, 7040
Offset: 0
A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 4, 2;
[3] 29, 23;
[4] 274, 292, 36;
[5] 3145, 4068, 994, 16;
[6] 42294, 62861, 22250, 1512;
[7] 651227, 1075562, 484840, 61027, 1060;
[8] 11295242, 20275944, 10867381, 1977879, 93188, 280;
[9] 217954807, 418724047, 255929070, 59896915, 4823178, 80632;
[10] ...
-
m = maxExponent = 13; Z[_] = 0;
Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}];
gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify;
CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* Jean-François Alcover, Nov 17 2018 *)
-
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1;); y;
};
A291844_ser(N, t='t) = {
my(z = A291843_ser(N+1,t));
((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
};
concat(apply(p->Vecrev(p), Vec(A291844_ser(12))))
A291843
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 0, 1, 5, 3, 36, 33, 2, 329, 388, 72, 3655, 5101, 1545, 64, 47844, 75444, 30700, 3023, 20, 721315, 1248911, 621937, 97200, 3134, 12310199, 22964112, 13269140, 2793713, 180936, 1656, 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352, 4939227215, 10316541393, 7336995966, 2239771686, 293933437, 13977294, 140660
Offset: 0
A(x;t) = 1 + x^2 + (5 + 3*t)*x^3 + (36 + 33*t + 2*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6]
[0] 1;
[1] 0;
[2] 1;
[3] 5, 3;
[4] 36, 33, 2;
[5] 329, 388, 72;
[6] 3655, 5101, 1545, 64;
[7] 47844, 75444, 30700, 3023, 20;
[8] 721315, 1248911, 621937, 97200, 3134;
[9] 12310199, 22964112, 13269140, 2793713, 180936, 1656;
[10] 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352;
[11] ...
-
nmax = 11; Clear[Z, Zp]; Z[_] = 0;
Do[
Zp[t_] = Z'[t] + O[t]^n // Normal;
Z[t_] = (-(1/(2L t (1+t)))) (-1 + t - 2L t + 2L^2 t^4 (1 + Zp[t]) + t^2 (1 + 2L + 2L Zp[t]) + L t^3 (3 + 2L + 2(1+L) Zp[t]) + Sqrt[4L t (1+t) (1 + L t)(-1 + t + 2L t^2 + 2(-1 + L) t^2 Zp[t]) + (-1 + t (1 + t + L (-2 + t (2 + t (3 + 2L (1+t))))) + 2L t^2 (1+t)(1 + L t) Zp[t])^2]) + O[t]^n // Normal // Simplify,
{n, nmax+1}];
CoefficientList[#, L]& /@ CoefficientList[Z[t], t] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 23 2018 *)
-
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1;); y;
};
concat(apply(p->if(p === Pol(0,'t), [0], Vecrev(p)), Vec(A291843_ser(12))))
\\ test: y=A291843_ser(56); 2*x^2*deriv(y,x) == (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x)
A286796
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 27, 40, 14, 1, 248, 419, 200, 30, 1, 2830, 5308, 3124, 700, 55, 1, 38232, 78070, 53620, 15652, 1960, 91, 1, 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1, 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1, 202601898, 495263284, 456715752, 209878440, 52619854, 7322172, 545908, 19800, 285, 1, 4342263000, 11085720018, 10921213644, 5516785032, 1579263840, 264576774, 25677652, 1372228, 36300, 385, 1
Offset: 0
A(x;t) = 1 + (1 + t)*x + (4 + 5*t + t^2)*x^2 + (27 + 40*t + 14*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 1; 1;
[2] 4, 5, 1;
[3] 27, 40, 14, 1;
[4] 248, 419, 200, 30, 1;
[5] 2830, 5308, 3124, 700, 55, 1;
[6] 38232, 78070, 53620, 15652, 1960, 91, 1;
[7] 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1;
[8] 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n]; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t];
Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 23 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);
concat(apply(p->Vecrev(p), Vec(A286796_ser(11))))
Showing 1-4 of 4 results.
Comments