cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294166 Row sums of A291843.

Original entry on oeis.org

1, 0, 1, 8, 71, 789, 10365, 157031, 2692497, 51519756, 1088093185, 25140587651, 630820490833, 17082650998878, 496596665961713, 15425333714935513, 509890407550644949, 17871584701588777344, 662057571007292023593, 25847670560115633381442
Offset: 0

Views

Author

Gheorghe Coserea, Nov 05 2017

Keywords

Crossrefs

Cf. A291843.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1; ); y;
    };
    Vec(A291843_ser(20,1))

Formula

G.f. y(x) satisfies: 0 = 2*x^2*(1+x)*y*deriv(y,x) + x*y^2 - (1+x)^2*(1-2*x)*y + (1+x)*(1-2*x).

A294167 Column 1 of triangle A291843.

Original entry on oeis.org

3, 33, 388, 5101, 75444, 1248911, 22964112, 465344235, 10316541393, 248583207948, 6472094085480, 181133509590584, 5424172954377851, 173089061380034193, 5864328868997378224, 210259284591708083349, 7954221480382049449284, 316654854011156144727459, 13233287747652092826502116
Offset: 3

Views

Author

Gheorghe Coserea, Nov 06 2017

Keywords

Crossrefs

Cf. A291843.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1; ); y;
    };
    A291843_kol(k, N=19) = {
      my(s = A291843_ser(N+1+3*(k+1)\2, t='t + O('t^(k+1))));
      Ser(polcoeff(s, k, 't), 'x, N);
    };
    Vec(A291843_kol(1))

A267827 Number of closed indecomposable linear lambda terms with 2n+1 applications and abstractions.

Original entry on oeis.org

1, 2, 20, 352, 8624, 266784, 9896448, 426577920, 20918138624, 1149216540160, 69911382901760, 4665553152081920, 338942971881472000, 26631920159494995968, 2250690001888540950528, 203595258621775065120768, 19629810220331494121865216
Offset: 0

Views

Author

Noam Zeilberger, Jan 21 2016

Keywords

Comments

A linear lambda term is indecomposable if it has no closed proper subterm.
Equivalently, number of closed bridgeless rooted trivalent maps (on compact oriented surfaces of arbitrary genus) with 2n+1 trivalent vertices (and 1 univalent vertex).
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			A(x) = 1 + 2*x + 20*x^2 + 352*x^3 + 8624*x^4 + 266784*x^5 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = (6n-2) a[n-1] + Sum[(6k+2) a[k] a[n-1-k], {k, 1, n-2}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 16 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 2;
      for(n=2, N,
        a[n] = (6*n-2)*a[n-1] + sum(k=1, n-2, (6*k+2)*a[k]*a[n-1-k]));
      concat(1,a);
    };
    seq(16)
    \\ test 1: y = x^2*subst(Ser(seq(201)),'x,-'x^6); 0 == x^5*y*y' + y - x^2
    \\ test 2: y = Ser(seq(201)); 0 == 6*y*y'*x^2 + 2*y^2*x - y + 1
    \\ Gheorghe Coserea, Nov 10 2017
    F(N) = {
      my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
      while(n++,
        F1 = t + x*(F0 - subst(F0,t,0))^2 + x*deriv(F0,t);
        if (F1 == F0, break()); F0 = F1;);
      F0;
    };
    seq(N) = my(v=Vec(subst(F(2*N+2),'t,0))); vector((#v+1)\2, n, v[2*n-1]);
    seq(16) \\ Gheorghe Coserea, Apr 01 2017

Formula

The o.g.f. f(z) = z + 2*z^3 + 20*z^5 + 352*z^7 + ... can be defined using a catalytic variable as f(z) = F(z,0), where F(z,x) satisfies the functional-differential equation F(z,x) = x + z*(F(z,x) - F(z,0))^2 + z*(d/dx)F(z,x).
From Gheorghe Coserea, Nov 10 2017: (Start)
0 = x^5*y*y' + y - x^2, where y(x) = x^2*A(-x^6).
0 = 6*y*y'*x^2 + 2*y^2*x - y + 1, where y(x) = A(x).
a(n) = (6*n-2)*a(n-1) + Sum_{k=1..n-2} (6*k+2)*a(k)*a(n-1-k), for n >= 2.
(End)
a(n) = A291843(3*n+1, 2*n), n >= 1. - Danny Rorabaugh, Nov 10 2017

A291844 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 4, 2, 29, 23, 274, 292, 36, 3145, 4068, 994, 16, 42294, 62861, 22250, 1512, 651227, 1075562, 484840, 61027, 1060, 11295242, 20275944, 10867381, 1977879, 93188, 280, 217954807, 418724047, 255929070, 59896915, 4823178, 80632, 4632600152, 9418874022, 6387031115, 1798212190, 204846125, 7410676, 37056, 107572674851, 229535650138, 169414005231, 55017177704, 8022471066, 463514918, 7255380, 7040
Offset: 0

Views

Author

Gheorghe Coserea, Oct 24 2017

Keywords

Comments

Row n>0 contains floor((2*n+2)/3) terms.

Examples

			A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ...
Triangle starts:
n\k  [0]        [1]        [2]        [3]       [4]      [5]
[0]  1;
[1]  1;
[2]  4,         2;
[3]  29,        23;
[4]  274,       292,       36;
[5]  3145,      4068,      994,       16;
[6]  42294,     62861,     22250,     1512;
[7]  651227,    1075562,   484840,    61027,    1060;
[8]  11295242,  20275944,  10867381,  1977879,  93188,   280;
[9]  217954807, 418724047, 255929070, 59896915, 4823178, 80632;
[10] ...
		

Crossrefs

Columns k=0..5 give A294160 (k=0), A294161 (k=1), A294162 (k=2), A294163 (k=3), A294164 (k=4), A294165 (k=5).

Programs

  • Mathematica
    m = maxExponent = 13; Z[_] = 0;
    Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}];
    gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify;
    CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* Jean-François Alcover, Nov 17 2018 *)
  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1,t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    concat(apply(p->Vecrev(p), Vec(A291844_ser(12))))

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y = ((1+x)*z - 1) * (1 + t*x)/((1-t + t*(1+x)*z)*x*z^2), where z = A291843(x;t) and P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n > 0.
A294158(n) = P_n(1), A294159(n)=P_n(-1), A294160(n)=P_n(0).
Showing 1-4 of 4 results.