Original entry on oeis.org
1, 0, 1, 8, 71, 789, 10365, 157031, 2692497, 51519756, 1088093185, 25140587651, 630820490833, 17082650998878, 496596665961713, 15425333714935513, 509890407550644949, 17871584701588777344, 662057571007292023593, 25847670560115633381442
Offset: 0
-
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1; ); y;
};
Vec(A291843_ser(20,1))
Original entry on oeis.org
3, 33, 388, 5101, 75444, 1248911, 22964112, 465344235, 10316541393, 248583207948, 6472094085480, 181133509590584, 5424172954377851, 173089061380034193, 5864328868997378224, 210259284591708083349, 7954221480382049449284, 316654854011156144727459, 13233287747652092826502116
Offset: 3
-
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1; ); y;
};
A291843_kol(k, N=19) = {
my(s = A291843_ser(N+1+3*(k+1)\2, t='t + O('t^(k+1))));
Ser(polcoeff(s, k, 't), 'x, N);
};
Vec(A291843_kol(1))
A267827
Number of closed indecomposable linear lambda terms with 2n+1 applications and abstractions.
Original entry on oeis.org
1, 2, 20, 352, 8624, 266784, 9896448, 426577920, 20918138624, 1149216540160, 69911382901760, 4665553152081920, 338942971881472000, 26631920159494995968, 2250690001888540950528, 203595258621775065120768, 19629810220331494121865216
Offset: 0
A(x) = 1 + 2*x + 20*x^2 + 352*x^3 + 8624*x^4 + 266784*x^5 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..303
- Lawrence Dresner, Protection of a test magnet wound with a Ag/BSCCO high-temperature superconductor, Oak Ridge National Lab technical report (ORNL/HTSPC-3), 1992. See Eq. (25).
- Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv:1512.06751 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Rutgers Experimental Math Seminar, Sep 13 2018. Part 2 is vimeo.com/289910554.
- Noam Zeilberger, From Lambda Calculus to the Four Color Theorem, via Experimental Mathematics (slides), Rutgers Experimental Math Seminar, Jun 18 2020. For the video see http://noamz.org/videos/expmath.2020.06.18.mp4.
- Noam Zeilberger, From Lambda Calculus to the Four Color Theorem, via Experimental Mathematics (slides), Rutgers Experimental Math Seminar, Jun 18 2020. [Local copy]
-
a[0] = 1; a[1] = 2; a[n_] := a[n] = (6n-2) a[n-1] + Sum[(6k+2) a[k] a[n-1-k], {k, 1, n-2}];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 16 2018, after Gheorghe Coserea *)
-
seq(N) = {
my(a = vector(N)); a[1] = 2;
for(n=2, N,
a[n] = (6*n-2)*a[n-1] + sum(k=1, n-2, (6*k+2)*a[k]*a[n-1-k]));
concat(1,a);
};
seq(16)
\\ test 1: y = x^2*subst(Ser(seq(201)),'x,-'x^6); 0 == x^5*y*y' + y - x^2
\\ test 2: y = Ser(seq(201)); 0 == 6*y*y'*x^2 + 2*y^2*x - y + 1
\\ Gheorghe Coserea, Nov 10 2017
F(N) = {
my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
while(n++,
F1 = t + x*(F0 - subst(F0,t,0))^2 + x*deriv(F0,t);
if (F1 == F0, break()); F0 = F1;);
F0;
};
seq(N) = my(v=Vec(subst(F(2*N+2),'t,0))); vector((#v+1)\2, n, v[2*n-1]);
seq(16) \\ Gheorghe Coserea, Apr 01 2017
A291844
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 4, 2, 29, 23, 274, 292, 36, 3145, 4068, 994, 16, 42294, 62861, 22250, 1512, 651227, 1075562, 484840, 61027, 1060, 11295242, 20275944, 10867381, 1977879, 93188, 280, 217954807, 418724047, 255929070, 59896915, 4823178, 80632, 4632600152, 9418874022, 6387031115, 1798212190, 204846125, 7410676, 37056, 107572674851, 229535650138, 169414005231, 55017177704, 8022471066, 463514918, 7255380, 7040
Offset: 0
A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 4, 2;
[3] 29, 23;
[4] 274, 292, 36;
[5] 3145, 4068, 994, 16;
[6] 42294, 62861, 22250, 1512;
[7] 651227, 1075562, 484840, 61027, 1060;
[8] 11295242, 20275944, 10867381, 1977879, 93188, 280;
[9] 217954807, 418724047, 255929070, 59896915, 4823178, 80632;
[10] ...
-
m = maxExponent = 13; Z[_] = 0;
Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}];
gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify;
CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* Jean-François Alcover, Nov 17 2018 *)
-
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1;); y;
};
A291844_ser(N, t='t) = {
my(z = A291843_ser(N+1,t));
((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
};
concat(apply(p->Vecrev(p), Vec(A291844_ser(12))))
Showing 1-4 of 4 results.
Comments