A000699
Number of irreducible chord diagrams with 2n nodes.
Original entry on oeis.org
1, 1, 1, 4, 27, 248, 2830, 38232, 593859, 10401712, 202601898, 4342263000, 101551822350, 2573779506192, 70282204726396, 2057490936366320, 64291032462761955, 2136017303903513184, 75197869250518812754, 2796475872605709079512, 109549714522464120960474, 4509302910783496963256400, 194584224274515194731540740
Offset: 0
a(31)=627625976637472254550352492162870816129760 was computed using Kreimer's Hopf algebra of rooted trees. It subsumes 2.6*10^21 terms in quantum field theory.
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2830*x^6 +...
where d/dx (A(x) - 1)^2/x = 1 + 4*x + 27*x^2 + 248*x^3 + 2830*x^4 +...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..404 (terms up to n=100 from T. D. Noe)
- Serban T. Belinschi, Marek Bozejko, Franz Lehner, and Roland Speicher, The normal distribution is "boxplus"-infinitely divisible, arXiv:0910.4263 [math.OA], 2009-2010.
- Daniel J. Bernstein, S. Engels, T. Lange, R. Niederhagen, et al., Faster elliptic-curve discrete logarithms on FPGAs, Preprint, 2016.
- Michael Borinsky, Generating asymptotics for factorially divergent sequences, arXiv preprint arXiv:1603.01236 [math.CO], 2016.
- Michael Borinsky, Generating asymptotics for factorially divergent sequences, El. J. Combin. 25 (2018) P4.1, Sect 7.1.
- Michael Borinsky, Gerald V. Dunne, and Karen Yeats, Tree-tubings and the combinatorics of resurgent Dyson-Schwinger equations, arXiv:2408.15883 [math-ph], 2024. See p. 9.
- David J. Broadhurst and Dirk Kreimer, Combinatoric explosion of renormalization ..., arXiv:hep-th/9912093, 1999, 2000.
- David J. Broadhurst and Dirk Kreimer, Combinatoric explosion of renormalization tamed by Hopf algebra: 30-loop Pad-Borel resummation, Phys. Lett. B 475 (2000), 63-70.
- Christian Brouder, On the trees of quantum fields, arXiv:hep-th/9906111, 1999, p. 6.
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts).
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, May 23, 2011.
- Jonathan Burns and Tilahun Muche, Counting Irreducible Double Occurrence Words, arXiv preprint arXiv:1105.2926 [math.CO], 2011.
- Julien Courtiel, Karen Yeats, and Noam Zeilberger, Connected chord diagrams and bridgeless maps, arXiv:1611.04611 [math.CO], 2016.
- Serge Dulucq, Etude combinatoire de problèmes d'énumération, d'algorithmique sur les arbres et de codage par des mots, a thesis presented to l'Université de Bordeaux I, 1987. (Annotated scanned copy)
- Philippe Flajolet and Marc Noy, Analytic Combinatorics of Chord Diagrams, in: Formal power series and algebraic combinatorics (FPSAC '00) Moscow, 2000, pp. 191-201.
- Zhen Huang, Denis Golež, Hugo U. R. Strand, and Jason Kaye, Automated evaluation of imaginary time strong coupling diagrams by sum-of-exponentials hybridization fitting, arXiv:2503.19727 [cond-mat.str-el], 2025. See p. 21.
- Martin Klazar, Non-P-recursiveness of numbers of matchings or linear chord diagrams with many crossings, Advances in Appl. Math., Vol. 30 (2003), pp. 126-136.
- Martin Klazar, Counting even and odd partitions, Amer. Math. Monthly, 110 (No. 6, 2003), 527-532.
- Florian Kogelbauer and Ilya Karlin, On the Relation of Exact Hydrodynamics to the Chapman-Enskog Series, arXiv:2506.17441 [math-ph], 2025. See pp. 4-5.
- Ali Assem Mahmoud, On the Asymptotics of Connected Chord Diagrams, University of Waterloo (Ontario, Canada 2019).
- Ali Assem Mahmoud, An Asymptotic Expansion for the Number of 2-Connected Chord Diagrams, arXiv:2009.12688 [math.CO], 2020.
- Ali Assem Mahmoud, Chord Diagrams and the Asymptotic Analysis of QED-type Theories, arXiv:2011.04291 [hep-th], 2020.
- Ali Assem Mahmoud, An asymptotic expansion for the number of two-connected chord diagrams, J. Math. Phys. (2023) Vol. 64, 122301. See Example 2.1.
- Ali Assem Mahmoud and Karen Yeats, Connected Chord Diagrams and the Combinatorics of Asymptotic Expansions, arXiv:2010.06550 [math.CO], 2020.
- Nicolas Marie and Karen Yeats, A chord diagram expansion coming from some Dyson-Schwinger equations, arXiv:1210.5457 [math.CO], 2012, Section 4.1.
- Albert Nijenhuis and Herbert S. Wilf, The enumeration of connected graphs and linked diagrams, J. Combin. Theory Ser. A 27 (1979), no. 3, 356--359. MR0555804 (82b:05074).
- Vincent Pilaud and Juanjo Rué, Analytic combinatorics of chord and hyperchord diagrams with k crossings, arXiv preprint arXiv:1307.6440 [math.CO], 2013.
- J. Riordan, Letter, Jul 06 1978
- Einar A. Rødland, Pseudoknots in RNA Secondary Structures: Representation, Enumeration, and Prevalence, J. Comput. Biology, Vol 13, No 6 (2006), 1197-1213. (see equation 10)
- R. R. Stein, On a class of linked diagrams, I. Enumeration, J. Combin. Theory, A 24 (1978), 357-366.
- R. R. Stein and C. J. Everett, On a class of linked diagrams, II. Asymptotics, Discrete Math., 21 (1978), 309-318.
- Jacques Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25.
- Jacques Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25. [Annotated, corrected, scanned copy]
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259 (nonseparable integer systems on n pairs). (Give an incorrect a(6)=2720.)
- Gus Wiseman, The a(4) = 27 connected chord diagrams.
- Gus Wiseman, The a(5) = 248 connected chord diagrams.
- Gus Wiseman, Constructive Mathematica program for A000699.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv:1803.10080 [math.LO], 2018-2019 (A revised version of a 2017 conference paper).
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Rutgers Experimental Math Seminar, Sep 13 2018. Part 2 is vimeo.com/289910554.
-
A000699 := proc(n)
option remember;
if n <= 1 then
1;
else
add((2*i-1)*procname(i)*procname(n-i),i=1..n-1) ;
end if;
end proc:
seq(A000699(n),n=0..30) ; # R. J. Mathar, Jun 12 2018
-
terms = 22; A[] = 0; Do[A[x] = x + x^2 * D[A[x]^2/x, x] + O[x]^(terms+1) // Normal, terms]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Apr 06 2012, after Paul D. Hanna, updated Jan 11 2018 *)
a = ConstantArray[0,20]; a[[1]]=1; Do[a[[n]] = (n-1)*Sum[a[[i]]*a[[n-i]],{i,1,n-1}],{n,2,20}]; a (* Vaclav Kotesovec, Feb 22 2014 *)
Module[{max = 20, s}, s = InverseSeries[ComplexExpand[Re[Series[2 DawsonF[x], {x, Infinity, 2 max + 1}]]]]; Table[SeriesCoefficient[s, 2 n - 1] 2^n, {n, 1, max}]] (* Vladimir Reshetnikov, Apr 23 2016 *)
-
{a(n)=local(A=1+x*O(x^n)); for(i=1, n, A=1+x+x^2*deriv((A-1)^2/x)+x*O(x^n)); polcoeff(A, n)} \\ Paul D. Hanna, Dec 31 2010 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
-
{a(n) = my(A); A = 1+O(x) ; for( i=0, n, A = 1+x + (A-1)*(2*x*A' - A + 1)); polcoeff(A, n)}; /* Michael Somos, May 12 2012 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020] */
-
seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
};
seq(22) \\ Gheorghe Coserea, Jan 22 2017
-
seq(n)={my(g=serlaplace(1 / sqrt(1 - 2*x + O(x*x^n)))); Vec(sqrt((x/serreverse( x*g^2 ))))} \\ Andrew Howroyd, Nov 21 2024
-
def A000699_list(n):
list = [1, 1] + [0] * (n - 1)
for i in range(2, n + 1):
list[i] = (i - 1) * sum(list[j] * list[i - j] for j in range(1, i))
return list
print(A000699_list(22)) # M. Eren Kesim, Jun 23 2021
Modified formulas slightly to include a(0) = 1. -
Paul D. Hanna, Nov 06 2020
A000698
A problem of configurations: a(0) = 1; for n>0, a(n) = (2n-1)!! - Sum_{k=1..n-1} (2k-1)!! a(n-k). Also the number of shellings of an n-cube, divided by 2^n n!.
Original entry on oeis.org
1, 1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, 12277827850, 285764591114, 7213364729026, 196316804255522, 5731249477826890, 178676789473121834, 5925085744543837186, 208256802758892355202, 7734158085942678174730
Offset: 0
G.f. = 1 + x + 2*x^2 + 10*x^3 + 74*x^4 + 706*x^5 + 8162*x^6 + 110410*x^7 + ...
- Dubois C., Giorgetti A., Genestier R. (2016) Tests and Proofs for Enumerative Combinatorics. In: Aichernig B., Furia C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science, vol 9762. Springer.
- R. W. Robinson, Counting irreducible Feynman diagrams exactly and asymptotically, Abstracts Amer. Math. Soc., 2002, #975-05-270.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Arques and J.-F. Beraud, Rooted maps on orientable surfaces, Riccati's equation and continued fractions, Discrete Math., 215 (2000), 1-12.
- F. Battaglia and T. F. George, A Pascal type triangle for the number of topologically distinct many-electron Feynman diagrams, J. Math. Chem. 2 (1988) 241-247.
- S. Birdsong and G. Hetyei, A Gray Code for the Shelling Types of the Boundary of a Hypercube, arXiv preprint arXiv:1111.4710 [math.CO], 2011.
- S. Birdsong and G. Hetyei, A Gray Code for the Shelling Types of the Boundary of a Hypercube, Discrete Math. 313 (2013), no. 3, 258-268. MR2995390.
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts)
- Jonathan Burns and Tilahun Muche, Counting Irreducible Double Occurrence Words, arXiv preprint arXiv:1105.2926 [math.CO], 2011, Lemma 3.2.
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, Disc. Appl. Math. 161 (2013) 1378-1394
- J. Courtiel, K. Yeats, and N. Zeilberger, Connected chord diagrams and bridgeless maps, arXiv:1661.04611, Proposition 13.
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949, (eq 3.34 and fig 2b). DOI:10.1103/PhysRevD.18.1939
- M. A. Deryagina and A. D. Mednykh, On the enumeration of circular maps with given number of edges, Siberian Mathematical Journal, 54, No. 6, 2013, 624-639.
- F. Disanto and N. A. Rosenberg, Coalescent histories for lodgepole species trees, J. Comput. Biol. 22 (2015), 918-929.
- S. Dulucq, Etude combinatoire de problèmes d'énumération, d'algorithmique sur les arbres et de codage par des mots, a thesis presented to l'Université de Bordeaux I, 1987. (Annotated scanned copy)
- Trinh Khanh Duy and Tomoyuki Shirai, The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles, arXiv:1504.06904 [math.SP], 2015.
- G. Edgar, Transseries for beginners, arXiv:0801.4877v5 [math.RA], 2008-2009.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Ali Assem Mahmoud, On the Asymptotics of Connected Chord Diagrams, University of Waterloo (Ontario, Canada 2019).
- Ali Assem Mahmoud and Karen Yeats, Connected Chord Diagrams and the Combinatorics of Asymptotic Expansions, arXiv:2010.06550 [math.CO], 2020.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 292.
- R. J. Mathar, Table of Feynman Diagrams of the Interacting Fermion Green's Function, Int. J. Quant. Chem. 107 (2007) 1975. Also on arXiv, arXiv:physics/0512022 [physics.atom-ph], 2015-2016.
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section VII.
- L. G. Molinari, Hedin's equations and enumeration of Feynman diagrams, Phys. Rev. B, 71 (2005), 113102.
- A. Prunotto, W. M. Alberico, and P. Czerski, Feynman diagrams and rooted maps, Open Phys. 16 (2018) 149-167.
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25.
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25. [Annotated, corrected, scanned copy]
- Wikipedia, Feynman diagram
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Rutgers Experimental Math Seminar, Sep 13 2018. Part 2 is vimeo.com/289910554.
- P. Zinn-Justin and J.-B. Zuber, Matrix integrals and the generation and counting of virtual tangles and links, arXiv:math-ph/0303049, 2003.
-
A006882 := proc(n) option remember; if n <= 1 then 1 else n*procname(n-2); fi; end;
A000698:=proc(n) option remember; global df; local k; if n=0 then RETURN(1); fi; A006882(2*n-1) - add(A006882(2*k-1)*A000698(n-k),k=1..n-1); end;
A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end; # R. J. Mathar, Apr 24 2006
# alternative Maple program:
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> `if`(n=0, 1, b(2*n-2, 0, false)):
seq(a(n), n=0..25); # Alois P. Heinz, May 23 2015
a_list := proc(len) local n, A; if len=1 then return [1] fi: A := Array(-1..len-2); A[-1] := 1; A[0] := 1; for n to len-2 do A[n] := (2*n-1)*A[n-1]+add(A[j]*A[n-j-1], j=0..n-1) od: convert(A, list) end: a_list(20); # Peter Luschny, Jul 18 2017
-
a[n_] := a[n] = (2n - 1)!! - Sum[ a[n - k](2k - 1)!!, {k, n-1}]; Array[a, 18, 0] (* Ignacio D. Peixoto, Jun 23 2006 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 2 - 1 / Sum[ (2 k - 1)!! x^k, {k, 0, n}], {x, 0, n}]]; (* Michael Somos, Nov 16 2011 *)
a[n_]:= SeriesCoefficient[1+x(1/x+(E^((1/2)/x) Sqrt[2/\[Pi]] Sqrt[-(1/x)])/Erfc[Sqrt[-(1/x)]/Sqrt[2]]), {x,0,n}, Assumptions -> x >0](* Robert Coquereaux, Sep 14 2014 *)
max = 20; g = t/Fold[1 - ((t + #2)*z)/#1 &, 1, Range[max, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; a[0] = 1; a[n_] := Sum[T[n-1, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016, after Philippe Deléham *)
-
{a(n) = if( n<0, 0, polcoeff( 2 - 1 / sum( k=0, n, x^k * (2*k)! /(2^k * k!), x * O(x^n)), n))}; /* Michael Somos, Feb 08 2011 */
-
{a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
-
from sympy import factorial2, cacheit
@cacheit
def a(n): return 1 if n == 0 else factorial2(2*n - 1) - sum(factorial2(2*k - 1)*a(n - k) for k in range(1, n))
[a(n) for n in range(51)] # Indranil Ghosh, Jul 18 2017
Formula corrected by Ignacio D. Peixoto, Jun 23 2006
A000260
Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.
Original entry on oeis.org
1, 1, 3, 13, 68, 399, 2530, 16965, 118668, 857956, 6369883, 48336171, 373537388, 2931682810, 23317105140, 187606350645, 1524813969276, 12504654858828, 103367824774012, 860593023907540, 7211115497448720, 60776550501588855
Offset: 0
G.f. = 1 + x + 3*x^2 + 13*x^3 + 68*x^4 + 399*x^5 + 2530*x^6 + 16965*x^7 + ...
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
- Handbook of Combinatorics, North-Holland '95, p. 891.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. T. Tutte, The enumerative theory of planar maps, in A Survey of Combinatorial Theory (J. N. Srivastava et al. eds.), pp. 437-448, North-Holland, Amsterdam, 1973.
- T. D. Noe, Table of n, a(n) for n = 0..200
- E. A. Bender and N. C. Wormald, The number of loopless planar maps, Discr. Math. 54:2 (1985), 235-237.
- Andreas Bernig, Unitarily invariant valuations and Tutte's sequence, arXiv:2001.03372 [math.DG], 2020.
- Alin Bostan, Frédéric Chyzak, Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi, Vincent Pilaud, and Kurt Stoeckl, Diagonals of permutahedra and associahedra, Sém. Lotharingien Comb., 37th Formal Power Series Alg. Comb. (FPSAC 2025). See pp. 10-11.
- Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
- T. Daniel Brennan, Christian Ferko, and Savdeep Sethi, A Non-Abelian Analogue of DBI from $T \overline{T}$, arXiv:1912.12389 [hep-th], 2019. See also SciPost Phys. (2020) Vol. 8, 052.
- Enrica Duchi and Corentin Henriet, A bijection between Tamari intervals and extended fighting fish, arXiv:2206.04375 [math.CO], 2022.
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- Frédéric Chapoton, Sur le nombre d'intervalles dans les treillis de Tamari, arXiv:math/0602368 [math.CO], 2006.
- Grégory Chatel, Vincent Pilaud, and Viviane Pons, The weak order on integer posets, arXiv:1701.07995 [math.CO], 2017.
- Grégory Chatel and Viviane Pons, Counting smaller elements in the Tamari and m-Tamari lattices, arXiv preprint arXiv:1311.3922 [math.CO], 2013.
- François David, A model of random surfaces with nontrivial critical behavior, Nuclear Physics B, v. 257 (1985), 543-576.
- Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- Wenjie Fang, Planar triangulations, bridgeless planar maps and Tamari intervals, arXiv:1611.07922 [math.CO], 2016.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- C. Germain and J. Pallo, The number of coverings in four Catalan lattices, Intern. J. Computer Math., Vol. 61 (1996) pp. 19-28. (See p. 27.)
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Zhaoxiang Li and Yanpei Liu, Chromatic sums of general maps on the sphere and the projective plane, Discr. Math. 307 (2007), 78-87.
- Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
- K. A. Penson, K. Górska, A. Horzela, and G. H. E. Duchamp, Hausdorff moment problem for combinatorial numbers of Brown and Tutte: exact solution, arXiv:2209.06574 [math.CO], 2022.
- Viviane Pons, Combinatorics of the Permutahedra, Associahedra, and Friends, arXiv:2310.12687 [math.CO], 2023. See p. 37.
- W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
- William T. Tutte, A census of planar triangulations, Canad. J. Math. 14 (1962), 21-38. See Eq. 5.12.
- William T. Tutte, On the enumeration of convex polyhedra, J. Combin. Theory Ser. B 28 (1980), no. 2, 105-126. MR0572468 (81j:05073).
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259, eq. (6).
- Noam Zeilberger, A sequent calculus for the Tamari order, arXiv:1701.02917 [cs.LO], 2017.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030 [math.LO], 2018-2019 (A revised version of a 2017 conference paper).
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Rutgers Experimental Math Seminar, Sep 13 2018. See also Part 2.
-
[Binomial(4*n+1, n+1)-9*Binomial(4*n+1, n-1): n in [0..25]]; // Vincenzo Librandi, Nov 24 2016
-
A000260 := proc(n)
2*(4*n+1)!/((n+1)!*(3*n+2)!) ;
end proc:
-
Table[Binomial[4n+1,n+1]-9*Binomial[4n+1,n-1],{n,0,25}] (* Harvey P. Dale, Aug 23 2011 *)
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 3/4, 1, 5/4}, {4/3, 5/3, 2}, 256/27 x], {x, 0, n}]; (* Michael Somos, Dec 23 2014 *)
terms = 22; G[] = 0; Do[G[x] = 1+x*G[x]^4 + O[x]^terms, terms];
CoefficientList[(2-G[x])*G[x]^2, x] (* Jean-François Alcover, Jan 13 2018, after Mark van Hoeij *)
-
{a(n) = if( n<0, 0, 2 * (4*n + 1)! / ((n + 1)! * (3*n + 2)!))}; /* Michael Somos, Sep 07 2005 */
-
{a(n) = binomial( 4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2))}; /* Michael Somos, Mar 28 2012 */
-
def a(n):
n = ZZ(n)
return (4*n + 2).binomial(n + 1) // ((2*n + 1) * (3*n + 2))
# F. Chapoton, Aug 06 2015
A000168
a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).
Original entry on oeis.org
1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756, 157923007560, 1598970451545, 16365932856990, 169114639522230, 1762352559231660, 18504701871932430, 195621134074714260, 2080697516976506220, 22254416920705240440, 239234981897581334730, 2583737804493878415084
Offset: 0
G.f. = 1 + 2*x + 9*x^2 + 54*x^3 + 378*x^4 + 2916*x^5 + 24057*x^6 + 208494*x^7 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 319, 353.
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
- V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..925 [Terms 0 to 100 computed by T. D. Noe; terms 101 to 925 by G. C. Greubel, Jan 15 2017]
- Marie Albenque and Dominique Poulalhon, A Generic Method for Bijections between Blossoming Trees and Planar Maps, Electron. J. Combin., 22 (2015), #P2.38.
- J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, Rooted planar maps modulo some patterns, Preprint 2016.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) p 1363-1390, A.1.
- M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005.
- Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
- R. Cori and B. Vauquelin, Planar maps are well labeled trees, Canad. J. Math., 33 (1981), 1023-1042.
- S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 516
- A. Giorgetti, R. Genestier, and V. Senni, Software Engineering and Enumerative Combinatorics, slides from a talk at MAP 2014.
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- C. Kassel, On combinatorial zeta functions, Slides from a talk, Potsdam, 2015.
- Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377--387. MR3090510. See Eq. (1). - _N. J. A. Sloane_, May 19 2014
- Evgeniy Krasko and Alexander Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics (2019) Vol. 342, Issue 2, 584-599. Also arXiv:1709.03225 [math.CO].
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Journal of Graph Theory, Volume 5, Issue 1, pages 115-117, Spring 1981.
- Valery A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Math. 156 (1996), no. 1-3, 197--217. MR1405018 (97f:05087) - From _N. J. A. Sloane_, Jun 03 2012
- R. C. Mullin, On the average activity of a spanning tree of a rooted map, J. Combin. Theory, 3 (1967), 103-121.
- R. C. Mullin, On the average activity of a spanning tree of a rooted map, J. Combin. Theory, 3 (1967), 103-121. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, arXiv:0912.0072 [math.NT], 2009; FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.
- C. Reutenauer and M. Robado, On an algebraicity theorem of Kontsevich, FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 241-248. - From _N. J. A. Sloane_, Dec 23 2012
- G. Schaeffer and P. Zinn-Justin, On the asymptotic number of plane curves and alternating knots, arXiv:math-ph/0304034, 2003-2004.
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
- Noam Zeilberger, Towards a mathematical science of programming, Preprint 2015.
- Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv preprint arXiv:1512.06751 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Noam Zeilberger and Alain Giorgetti, A correspondence between rooted planar maps and normal planar lambda terms, arXiv:1408.5028 [cs.LO], 2014-2015; Logical Methods in Computer Science, vol. 11 (3:22), 2015, pp. 1-39.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
Rooted maps with n edges of genus g for 0 <= g <= 10: this sequence,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
-
[(2*Catalan(n)*3^n)/(n+2): n in [1..30]]; // Vincenzo Librandi, Sep 04 2014
-
A000168:=n->2*3^n*(2*n)!/(n!*(n+2)!);
-
Table[(2*3^n*(2n)!)/(n!(n+2)!),{n,0,20}] (* Harvey P. Dale, Jul 25 2011 *)
a[ n_] := If[ n < 0, 0, 2 3^n (2 n)!/(n! (n + 2)!)] (* Michael Somos, Nov 25 2013 *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1, 3, 12 x], {x, 0, n}] (* Michael Somos, Nov 25 2013 *)
-
{a(n) = if( n<0, 0, 2 * 3^n * (2*n)! / (n! * (n+2)!))}; /* Michael Somos, Nov 25 2013 */
A062980
a(0) = 1, a(1) = 5; for n > 1, a(n) = 6*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1).
Original entry on oeis.org
1, 5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750, 202903221120000, 13437880555850250, 970217083619328000, 75849500508999712500, 6383483988812390400000, 575440151532675686278125, 55318762960656722780160000
Offset: 0
Michael Praehofer (praehofer(AT)ma.tum.de), Jul 24 2001
1 + 5*x + 60*x^2 + 1105*x^3 + 27120*x^4 + 828250*x^5 + 30220800*x^6 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 0..100
- O. Bodini, D. Gardy, and A. Jacquot, Asymptotics and random sampling for BCI and BCK lambda terms, Theor. Comput. Sci. 502: 227-238 (2013).
- Jørgen Ellegaard Andersen, Gaëtan Borot, Leonid O. Chekhov and Nicolas Orantin, The ABCD of topological recursion, arXiv:1703.03307 [math-ph], 2017. [See Appendix A.1]
- Laura Ciobanu and Alexander Kolpakov, Free subgroups of free products and combinatorial hypermaps, arXiv:1708.03842 [math.CO], 2017.
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949, (eq 3.14 and fig 1b). DOI:10.1103/PhysRevD.18.1939
- Bertrand Eynard, Topological expansion for the 1-hermitian matrix model correlation functions, Journal of High Energy Physics 11 (2004). [See Eq. (5.12) and Appendix A]
- Steven R. Finch, Shapes of binary trees, June 24, 2004. [Cached copy, with permission of the author]
- Steven R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 2024.
- Éric Fusy, Luca Lionni, Adrian Tanasa, Combinatorial study of graphs arising from the Sachdev-Ye-Kitaev model, arXiv:1810.02146 [math.CO], 2018.
- Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, How big is BCI fragment of BCK logic, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. [From _N. J. A. Sloane_, Feb 21 2012]
- Kristian Gustavsson and Bernhard Mehlig, Statistical models for spatial patterns of heavy particles in turbulence, arxiv:1412.4374 [physics.flu-dyn], 2014-2016. [See Figure 14]
- M. J. Kearny and R. J. Martin, Normalized functionals of first passage Brownian motion and a curious connection with the maximal relative height of fluctuating interfaces, J. Phys. A, Math. Theor. 49, No. 19, Article ID 195001, 20 p. (2016).
- George Kaye, A visualiser for linear lambda-terms as 3-valent rooted maps, University of Birmingham (UK, 2019).
- S. Janson, The Wiener index of simply generated random trees, Random Structures Algorithms 22 (2003) 337-358.
- Michael J. Kearney, Satya N. Majumdar and Richard J. Martin, The first-passage area for drifted Brownian motion and the moments of the Airy distribution, arXiv:0706.2038 [cond-mat.stat-mech], 2007. [a(n) = 8^n * K_n from Eq. (3)]
- Pierre Lescanne, Quantitative aspects of linear and affine closed lambda terms, arXiv:1702.03085 [cs.DM], 2017. Also in ACM Transactions on Computational Logic (TOCL 2019), Vol. 19, No. 2, Article No. 9.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. See p. 292.
- NIST Digital Library of Mathematical Functions, Airy Functions.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Paul Tarau and Valeria de Paiva, Deriving Theorems in Implicational Linear Logic, Declaratively, arXiv:2009.10241 [cs.LO], 2020. See also Github, (2020).
- Samuel Vidal and Michel Petitot, Counting Rooted and Unrooted Triangular Maps, Journal of Nonlinear Systems and Applications (2009) 151-154.
- Eric Weisstein's World of Mathematics, Airy Functions, contains the definitions of Ai(x), Bi(x).
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
- Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv preprint arXiv:1512.06751 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030 [math.LO], March 2018 (A revised version of a 2017 conference paper).
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Noam Zeilberger and Alain Giorgetti, A correspondence between rooted planar maps and normal planar lambda terms, arXiv:1408.5028 [cs.LO], 2014-2015; Logical Methods in Computer Science, vol. 11 (3:22), 2015, pp. 1-39.
With interspersed zeros column 3 of
A380622.
Connected pointed version of
A129115.
-
a062980 n = a062980_list !! n
a062980_list = 1 : 5 : f 2 [5,1] where
f u vs'@(v:vs) = w : f (u + 1) (w : vs') where
w = 6 * u * v + sum (zipWith (*) vs_ $ reverse vs_)
vs_ = init vs
-- Reinhard Zumkeller, Jun 03 2013
-
a:= proc(n) option remember; `if`(n<2, 4*n+1,
6*n*a(n-1) +add(a(k)*a(n-k-1), k=1..n-2))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 31 2017
-
max = 16; f[y_] := -Sqrt[x] - 1/(4*x) + Sum[(-1)^n*a[n]*(4*x)^(1/2 - 3*(n/2)), {n, 2, max}] /. x -> 1/y^2; s[y_] := Normal[ Series[ AiryAiPrime[x] / AiryAi[x], {x, Infinity, max + 7}]] /. x -> 1/y^2; sol = SolveAlways[ Simplify[ f[y] == s[y], y > 0], y] // First; Join[{1, 5}, Table[a[n], {n, 3, max}] /. sol] (* Jean-François Alcover, Oct 09 2012, from Airy function asymptotics *)
a[0] = 1; a[n_] := a[n] = (6*(n-1)+4)*a[n-1] + Sum[a[i]*a[n-i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Nov 29 2013, after Vladimir Reshetnikov *)
-
{a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6*k - 8) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
-
from sympy.core.cache import cacheit
@cacheit
def a(n): return n*4 + 1 if n<2 else 6*n*a(n - 1) + sum(a(k)*a(n - k - 1) for k in range(1, n - 1))
print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 09 2017
A000309
Number of rooted planar bridgeless cubic maps with 2n nodes.
Original entry on oeis.org
1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Marie Albenque, Dominique Poulalhon, A Generic Method for Bijections between Blossoming Trees and Planar Maps, Electron. J. Combin., 22 (2015), #P2.38.
- Dario Benedetti, Sylvain Carrozza, Reiko Toriumi, Guillaume Valette, Multiple scaling limits of U(N)^2 X O(D) multi-matrix models, arXiv:2003.02100 [math-ph], 2020.
- Olivier Bernardi, Bijective counting of Kreweras walks and loopless triangulations, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.
- Junliang Cai, Yanpei Liu, The enumeration of rooted nonseparable nearly cubic maps, Discrete Math. 207 (1999), no. 1-3, 9--24. MR1710479 (2000g:05074). See (31).
- Robert Cori and Gilles Schaeffer, Description trees and Tutte formulas, Theoretical Computer Science 292:1 (2003), 165-183.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- R. C. Mullin, On counting rooted triangular maps, Canad. J. Math., v.17 (1965), 373-382.
- Elena Patyukova, Taylor Rottreau, Robert Evans, Paul D. Topham, Martin J. Greenall, Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment, Macromolecules (2018) Vol. 51, No. 18, 7032-7043. Also arXiv:1805.09878 [math.CA], 2018.
- W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
- W. T. Tutte, On the enumeration of four-colored maps, SIAM J. Appl. Math., 17 (1969), 454-460.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv:1803.10080 [math.LO], March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
-
List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
-
[2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
-
a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
-
f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
-
a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
-
[2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
A002005
Number of rooted planar cubic maps with 2n vertices.
Original entry on oeis.org
1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520
Offset: 0
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gheorghe Coserea, Table of n, a(n) for n = 0..1000
- Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) p 1363-1390, A.3
- Mireille Bousquet-Mélou, Counting planar maps, coloured or uncoloured, 23rd British Combinatorial Conference, Jul 2011, Exeter, United Kingdom. 392, pp.1-50, 2011, London Math. Soc. Lecture Note Ser., hal-00653963. See p.13.
- Evgeniy Krasko and Alexander Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics (2019) Vol. 342, Issue 2, 584-599. Also arXiv:1709.03225 [math.CO].
- Maxim Krikun, Explicit enumeration of triangulations with multiple boundaries, arXiv:0706.0681 [math.CO], 2007. [Comment from _Gheorghe Coserea_, Dec 26 2015: the formula in the paper for almost trivalent maps is 2 * 4^(k-1) * (3k)!!/ ((k+1)!*(k+2)!!); however, the exponent of 4 should be k not (k-1) i.e. 2 * 4^k * (3k)!! / ((k+1)!*(k+2)!!)]
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030 [math.LO], March 2018 (A revised version of a 2017 conference paper).
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
-
seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
-
Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3,-1/3,1/2,432z^2]- 96 z Hypergeometric2F1[-1/6,1/6,3/2,432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
-
factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
vector(20, i, a(i-1))
\\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
\\ Gheorghe Coserea, Jun 13 2017
A262301
Number of normal linear lambda terms of size n with no free variables.
Original entry on oeis.org
1, 3, 26, 367, 7142, 176766, 5304356, 186954535, 7566084686, 345664350778, 17592776858796, 986961816330662, 60502424162842876, 4023421969420255644, 288464963899330354104, 22180309834307193611287, 1820641848410408158704734, 158897008602951290424279330
Offset: 1
A(x) = x + 3*x^2 + 26*x^3 + 367*x^4 + 7142*x^5 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 1..100
- Paul Tarau, Valeria de Paiva, Deriving Theorems in Implicational Linear Logic, Declaratively, arXiv:2009.10241 [cs.LO], 2020. See also Github, (2020).
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
- Wikipedia, Lambda calculus
-
terms = 18; F[, ] = 0;
Do[F[x_, t_] = Series[x t/(1-F[x, t]) + D[F[x, t], t], {x, 0, terms}, {t, 0, terms}] // Normal, {2 terms}];
CoefficientList[F[x, 0], x][[2 ;; terms+1]] (* Jean-François Alcover, Sep 02 2018, after Gheorghe Coserea *)
-
F(N) = {
my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
while(n++,
F1 = x*t/(1-F0) + deriv(F0,t);
if (F1 == F0, break()); F0 = F1;);
F0;
};
seq(N) = Vec(subst(F(N+1), 't, 0));
seq(18) \\ Gheorghe Coserea, Apr 01 2017
A281270
a(n) is the number of closed BCK (a.k.a. affine) lambda terms of size n.
Original entry on oeis.org
0, 0, 1, 2, 3, 9, 30, 81, 242, 838, 2799, 9365, 33616, 122937, 449698, 1696724, 6558855, 25559806, 101294687, 409363758, 1673735259, 6928460475, 29115833976, 123835124242, 532449210893, 2317382872404, 10199542298725, 45345006540851, 203704505953902, 924427259637953, 4234544300812834
Offset: 0
A(x) = x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 81*x^7 + 242*x^8 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..201
- O. Bodini, D. Gardy, and A. Jacquot, Asymptotics and random sampling for BCI and BCK lambda terms, Theor. Comput. Sci. 502: 227-238 (2013).
- Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, How big is BCI fragment of BCK logic, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. (the authors of the paper incorrectly identified this sequence as A073950)
- Pierre Lescanne, Quantitative aspects of linear and affine closed lambda term, arXiv:1702.03085 [cs.DM], 2017.
-
a[0] = a[1] = 0; a[n_] := a[n] = 1 + a[n - 1] + 2 Sum[ k a[k], {k, 2, n - 3}] + Sum[a[k] a[n - 1 - k], {k, 2, n - 3}]; Table[a@ n, {n, 0, 30}] (* Michael De Vlieger, Apr 02 2017 *)
-
seq(N) = {
my(a = vector(N));
for (n=2, N, my(s1 = sum(k=2, n-3, k*a[k]));
a[n] = 1 + a[n-1] + 2*s1 + sum(k=2, n-3, a[k]*a[n-1-k]));
concat(0,a);
};
seq(30)
\\ test: y = Ser(seq(201)); 0 == 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2
A291843
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 0, 1, 5, 3, 36, 33, 2, 329, 388, 72, 3655, 5101, 1545, 64, 47844, 75444, 30700, 3023, 20, 721315, 1248911, 621937, 97200, 3134, 12310199, 22964112, 13269140, 2793713, 180936, 1656, 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352, 4939227215, 10316541393, 7336995966, 2239771686, 293933437, 13977294, 140660
Offset: 0
A(x;t) = 1 + x^2 + (5 + 3*t)*x^3 + (36 + 33*t + 2*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6]
[0] 1;
[1] 0;
[2] 1;
[3] 5, 3;
[4] 36, 33, 2;
[5] 329, 388, 72;
[6] 3655, 5101, 1545, 64;
[7] 47844, 75444, 30700, 3023, 20;
[8] 721315, 1248911, 621937, 97200, 3134;
[9] 12310199, 22964112, 13269140, 2793713, 180936, 1656;
[10] 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352;
[11] ...
-
nmax = 11; Clear[Z, Zp]; Z[_] = 0;
Do[
Zp[t_] = Z'[t] + O[t]^n // Normal;
Z[t_] = (-(1/(2L t (1+t)))) (-1 + t - 2L t + 2L^2 t^4 (1 + Zp[t]) + t^2 (1 + 2L + 2L Zp[t]) + L t^3 (3 + 2L + 2(1+L) Zp[t]) + Sqrt[4L t (1+t) (1 + L t)(-1 + t + 2L t^2 + 2(-1 + L) t^2 Zp[t]) + (-1 + t (1 + t + L (-2 + t (2 + t (3 + 2L (1+t))))) + 2L t^2 (1+t)(1 + L t) Zp[t])^2]) + O[t]^n // Normal // Simplify,
{n, nmax+1}];
CoefficientList[#, L]& /@ CoefficientList[Z[t], t] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 23 2018 *)
-
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1;); y;
};
concat(apply(p->if(p === Pol(0,'t), [0], Vecrev(p)), Vec(A291843_ser(12))))
\\ test: y=A291843_ser(56); 2*x^2*deriv(y,x) == (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x)
Showing 1-10 of 13 results.
Comments