A281270
a(n) is the number of closed BCK (a.k.a. affine) lambda terms of size n.
Original entry on oeis.org
0, 0, 1, 2, 3, 9, 30, 81, 242, 838, 2799, 9365, 33616, 122937, 449698, 1696724, 6558855, 25559806, 101294687, 409363758, 1673735259, 6928460475, 29115833976, 123835124242, 532449210893, 2317382872404, 10199542298725, 45345006540851, 203704505953902, 924427259637953, 4234544300812834
Offset: 0
A(x) = x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 81*x^7 + 242*x^8 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..201
- O. Bodini, D. Gardy, and A. Jacquot, Asymptotics and random sampling for BCI and BCK lambda terms, Theor. Comput. Sci. 502: 227-238 (2013).
- Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, How big is BCI fragment of BCK logic, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. (the authors of the paper incorrectly identified this sequence as A073950)
- Pierre Lescanne, Quantitative aspects of linear and affine closed lambda term, arXiv:1702.03085 [cs.DM], 2017.
-
a[0] = a[1] = 0; a[n_] := a[n] = 1 + a[n - 1] + 2 Sum[ k a[k], {k, 2, n - 3}] + Sum[a[k] a[n - 1 - k], {k, 2, n - 3}]; Table[a@ n, {n, 0, 30}] (* Michael De Vlieger, Apr 02 2017 *)
-
seq(N) = {
my(a = vector(N));
for (n=2, N, my(s1 = sum(k=2, n-3, k*a[k]));
a[n] = 1 + a[n-1] + 2*s1 + sum(k=2, n-3, a[k]*a[n-1-k]));
concat(0,a);
};
seq(30)
\\ test: y = Ser(seq(201)); 0 == 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2
A287030
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
0, 0, 1, 1, 1, 2, 1, 1, 3, 5, 3, 9, 17, 6, 2, 30, 41, 26, 10, 81, 131, 111, 30, 5, 242, 491, 357, 134, 35, 838, 1625, 1274, 652, 140, 14, 2799, 5497, 5202, 2556, 676, 126, 9365, 20581, 19827, 10200, 3610, 630, 42, 33616, 76561, 74797, 44880, 16390, 3334, 462, 122937, 282591, 301188, 190278, 72490, 19218, 2772, 132, 449698, 1089375, 1219920, 788654, 341770, 97890, 16108, 1716, 1696724, 4285737, 4893603, 3398950, 1578577, 474838, 99386, 12012, 429
Offset: 0
A(x;t) = t*x + (1 + t)*x^2 + (2 + t + t^2)*x^3 + (3 + 5*t + 3*t^2)*x^4 + (9 + 17*t + 6*t^2 + 2*t^3)*x^5 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 0;
[1] 0, 1;
[2] 1, 1;
[3] 2, 1, 1;
[4] 3, 5, 3;
[5] 9, 17, 6, 2;
[6] 30, 41, 26, 10;
[7] 81, 131, 111, 30, 5;
[8] 242, 491, 357, 134, 35;
[9] 838, 1625, 1274, 652, 140, 14;
[10] 2799, 5497, 5202, 2556, 676, 126;
[11] 9365, 20581, 19827, 10200, 3610, 630, 42;
[12] 33616, 76561, 74797, 44880, 16390, 3334, 462;
[13] 122937, 282591, 301188, 190278, 72490, 19218, 2772, 132;
[14] 449698, 1089375, 1219920, 788654, 341770, 97890, 16108, 1716;
[15] ...
-
max = 15; y[, ] = 0;
Do[y[x_, t_] = Series[t x + x y[x, t]^2 + x D[y[x, t], t] + x y[x, t], {x, 0, max}, {t, 0, max}] // Normal, max];
CoefficientList[#, t]& /@ CoefficientList[y[x, t], x] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 25 2018 *)
-
A287030_ser(N) = {
my(x='x+O('x^N), F0=x, t='t, F1=0, n=1);
while(n++,
F1 = t*x + x*F0^2 + x*deriv(F0,t) + x*F0;
if (F1 == F0, break()); F0 = F1;); F0;
};
concat(0, concat(apply(p->Vecrev(p), Vec(A287030_ser(16)))))
\\ test: y=A287030_ser(100); y == t*x + x*y^2 + x*deriv(y,t) + x*y
A287040
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 5, 3, 2, 8, 17, 22, 10, 5, 29, 91, 106, 94, 35, 14, 140, 431, 701, 582, 396, 126, 42, 661, 2501, 4067, 4544, 2980, 1654, 462, 132, 3622, 14025, 27394, 31032, 26680, 14598, 6868, 1716, 429, 19993, 87947, 177018, 236940, 208780, 146862, 69356, 28396, 6435, 1430, 120909, 550811, 1245517, 1727148, 1776310, 1291654, 772422, 322204, 117016, 24310, 4862
Offset: 0
A(x;t) = t + (1 + t + t^2)*x + (2 + 5*t + 3*t^2 + 2*t^3)*x^2 + (8 + 17*t + 22*t^2 + 10*t^3 + 5*t^4)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 0, 1;
[1] 1, 1, 1;
[2] 2, 5, 3, 2;
[3] 8, 17, 22, 10, 5;
[4] 29, 91, 106, 94, 35, 14;
[5] 140, 431, 701, 582, 396, 126, 42;
[6] 661, 2501, 4067, 4544, 2980, 1654, 462, 132;
[7] 3622, 14025, 27394, 31032, 26680, 14598, 6868, 1716, 429;
[8] 19993, 87947, 177018, 236940, 208780, 146862, 69356, 28396, 6435, 1430;
[9] ...
-
nmax = 10; y[0, t_] := t; y[, ] = 0;
Do[y[x_, t_] = Series[t + x y[x, t]^2 + x D[y[x, t], t] + x y[x, t], {x, 0, nmax}, {t, 0, nmax}] // Normal, {n, 0, nmax}];
CoefficientList[#, t]& /@ CoefficientList[y[x, t]+O[x]^nmax, x] // Flatten (* Jean-François Alcover, Dec 13 2018 *)
-
A287040_ser(N) = {
my(x='x+O('x^N), t='t, F0=t, F1=0, n=1);
while(n++,
F1 = t + x*F0^2 + x*deriv(F0, t) + x*F0;
if (F1 == F0, break()); F0 = F1; ); F0;
};
concat(apply(p->Vecrev(p), Vec(A287040_ser(10))))
\\ test: y=A287040_ser(50); y == t + x*y^2 + x*deriv(y, t) + x*y
A287045
a(n) is the number of size n affine closed terms of variable size 0.
Original entry on oeis.org
0, 1, 2, 8, 29, 140, 661, 3622, 19993, 120909, 744890, 4887401, 32795272, 230728608, 1661537689, 12426619200, 95087157771, 750968991327, 6062088334528, 50288003979444, 425889463252945, 3694698371069796, 32683415513480237, 295430131502604353, 2719833636188015674, 25536232370225996575
Offset: 0
A(x) = x + 2*x^2 + 8*x^3 + 29*x^4 + 140*x^5 + ...
-
a[n_] := a[n] = If[n<3, n, (3a[n-1] + (6n-10) a[n-2] - a[n-3] + 2b[n-1] - b[n-2] - b[n-3])/2]; b[n_] := Sum[a[k] a[n-k], {k, 1, n-1}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 13 2018 *)
-
A287040_ser(N) = {
my(x='x+O('x^N), t='t, F0=t, F1=0, n=1);
while(n++,
F1 = t + x*F0^2 + x*deriv(F0, t) + x*F0;
if (F1 == F0, break()); F0 = F1; ); F0;
};
concat(0, Vec(subst(A287040_ser(26), 't, 0)))
-
A287045_seq(N) = {
my(a = vector(N), b=vector(N), t1=0);
a[1]=1; a[2]=2; a[3]=8; b[1]=0; b[2]=1; b[3]=4;
for (n=4, N, b[n] = sum(k=1, n-1, a[k]*a[n-k]);
t1 = 3*a[n-1] + (6*n-10)*a[n-2] - a[n-3];
a[n] = (t1 + 2*b[n-1] - b[n-2] - b[n-3])/2);
concat(0,a);
};
A287045_seq(25)
\\ test: y=Ser(A287045_seq(200)); 0 == 6*x^3*y' - x*(x-1)*(x+2)*y^2 - (x^3-2*x^2-3*x+2)*y + x^2 + 2*x
A318110
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
0, 1, 1, 3, 3, 1, 26, 26, 11, 2, 367, 367, 167, 42, 5, 7142, 7142, 3352, 944, 163, 14, 176766, 176766, 84308, 25006, 4965, 638, 42, 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132, 186954535, 186954535, 90600599, 28120586, 6200455, 1010814, 121086, 9908, 429, 7566084686, 7566084686, 3683084984, 1156456088, 261067596, 44535120, 5829880, 574128, 39203, 1430
Offset: 0
A(x,t) = (1+t)*x + (3+3*t+t^2)*x^2 + (26+26*t+11*t^2+2*t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 0;
[1] 1, 1;
[2] 3, 3, 1;
[3] 26, 26, 11, 2;
[4] 367, 367, 167, 42, 5;
[5] 7142, 7142, 3352, 944, 163, 14;
[6] 176766, 176766, 84308, 25006, 4965, 638, 42;
[7] 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132;
[8] 186954535,186954535,90600599,28120586,6200455,1010814,121086,9908,429;
[9] ...
Main diagonal gives
A000108(n-1) for n>0.
Second diagonal gives
A032443(n-1) for n>0.
-
rows = 10; Clear[A]; A[x_, t_] = (1+t)x;
Do[A[x_, t_] = Series[x t/(1-A[x, t]) + D[A[x, t], t], {x, 0, n}, {t, 0, n}] // Normal, {n, 2 rows}];
CoefficientList[#, t]& /@ CoefficientList[A[x, t], x] /. {} -> {0} // Take[#, rows]& // Flatten (* Jean-François Alcover, Oct 23 2018 *)
-
seq(N) = {
my(x='x+O('x^N), t='t, F0=(1+t)*x, F1=0, n=1);
while(n++,
F1 = F0^2; F1 = F1 - deriv(F1,'t)/2 + deriv(F0,'t) + x*t;
if (F1 == F0, break()); F0 = F1);
concat([[0]], apply(Vecrev, Vec(F0)));
};
concat(seq(10))
\\ test: y=Ser(apply(p->Polrev(p,'t), seq(101)), 'x); y == x*'t/(1-y) + deriv(y,'t)
Showing 1-5 of 5 results.
Comments