A287030 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
0, 0, 1, 1, 1, 2, 1, 1, 3, 5, 3, 9, 17, 6, 2, 30, 41, 26, 10, 81, 131, 111, 30, 5, 242, 491, 357, 134, 35, 838, 1625, 1274, 652, 140, 14, 2799, 5497, 5202, 2556, 676, 126, 9365, 20581, 19827, 10200, 3610, 630, 42, 33616, 76561, 74797, 44880, 16390, 3334, 462, 122937, 282591, 301188, 190278, 72490, 19218, 2772, 132, 449698, 1089375, 1219920, 788654, 341770, 97890, 16108, 1716, 1696724, 4285737, 4893603, 3398950, 1578577, 474838, 99386, 12012, 429
Offset: 0
Examples
A(x;t) = t*x + (1 + t)*x^2 + (2 + t + t^2)*x^3 + (3 + 5*t + 3*t^2)*x^4 + (9 + 17*t + 6*t^2 + 2*t^3)*x^5 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [0] 0; [1] 0, 1; [2] 1, 1; [3] 2, 1, 1; [4] 3, 5, 3; [5] 9, 17, 6, 2; [6] 30, 41, 26, 10; [7] 81, 131, 111, 30, 5; [8] 242, 491, 357, 134, 35; [9] 838, 1625, 1274, 652, 140, 14; [10] 2799, 5497, 5202, 2556, 676, 126; [11] 9365, 20581, 19827, 10200, 3610, 630, 42; [12] 33616, 76561, 74797, 44880, 16390, 3334, 462; [13] 122937, 282591, 301188, 190278, 72490, 19218, 2772, 132; [14] 449698, 1089375, 1219920, 788654, 341770, 97890, 16108, 1716; [15] ...
Links
- Gheorghe Coserea, Rows n=0..200, flattened
- Pierre Lescanne, Quantitative aspects of linear and affine closed lambda terms, arXiv:1702.03085 [cs.DM], 2017.
Programs
-
Mathematica
max = 15; y[, ] = 0; Do[y[x_, t_] = Series[t x + x y[x, t]^2 + x D[y[x, t], t] + x y[x, t], {x, 0, max}, {t, 0, max}] // Normal, max]; CoefficientList[#, t]& /@ CoefficientList[y[x, t], x] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 25 2018 *)
-
PARI
A287030_ser(N) = { my(x='x+O('x^N), F0=x, t='t, F1=0, n=1); while(n++, F1 = t*x + x*F0^2 + x*deriv(F0,t) + x*F0; if (F1 == F0, break()); F0 = F1;); F0; }; concat(0, concat(apply(p->Vecrev(p), Vec(A287030_ser(16))))) \\ test: y=A287030_ser(100); y == t*x + x*y^2 + x*deriv(y,t) + x*y
Comments