cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Samuel A. Vidal

Samuel A. Vidal's wiki page.

Samuel A. Vidal has authored 7 sequences.

A129115 Number of unrooted unlabeled not necessarily connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges).

Original entry on oeis.org

1, 3, 17, 124, 1618, 33564, 956263, 33736198, 1402665692, 66902717187, 3596481426812, 215049652739982, 14154852098315796, 1016911004448831247, 79174846391508487198, 6640511488761139957873, 596865894849670793348763, 57234563024075319273338452, 5832189914390355126473955563
Offset: 0

Author

Samuel A. Vidal, Mar 30 2007

Keywords

Comments

Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a set of size 6*n with sigma^3=tau^2=1 with no fixed point.

Crossrefs

Not necessarily connected version of A129114.
Unrooted, not necessarily connected version of A062980.
Cf. also A121350, A121352, A005133.

Programs

  • PARI
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    seq(n)={my(t=6*n); Vec(prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(3,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%6==0, r!*polcoef(p,r)/(k^r)*x^(k*r/6)), O(x*x^n)) ))} \\ Andrew Howroyd, Jan 29 2025

Formula

Euler transform of A129114. - Andrew Howroyd, Jan 29 2025

Extensions

a(17) onwards from Andrew Howroyd, Jan 28 2025

A129114 Number of unrooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges).

Original entry on oeis.org

1, 3, 11, 81, 1228, 28174, 843186, 30551755, 1291861997, 62352938720, 3381736322813, 203604398647922, 13475238697911184, 972429507963453210, 75993857157285258473, 6393779463050776636807, 576237114190853665462712, 55385308766655472416299110, 5655262782600929403228668176
Offset: 0

Author

Samuel A. Vidal, Mar 30 2007

Keywords

Comments

Equivalently, the number of pairs of permutations (sigma,tau) up to simultaneous conjugacy on a set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point.

Crossrefs

Column 3 of A380626.
Connected version of A129115.
Unrooted version of A062980.
Cf. also A121350, A121352, A005133.

Formula

Inverse Euler transform of A129115. - Andrew Howroyd, Jan 29 2025

Extensions

a(0)=1 prepended and terms a(17) onwards from Andrew Howroyd, Jan 29 2025

A121355 Number of transitive PSL_2(ZZ) actions on a finite labeled set of size n.

Original entry on oeis.org

1, 1, 8, 48, 120, 2640, 30240, 201600, 4838400, 96163200, 1037836800, 30496435200, 828193766400, 13686991718400, 450537408921600, 15880397524992000, 356398802952192000, 13410127414075392000, 569542360114151424000, 16614774394239909888000
Offset: 1

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of different connected labeled trivalent diagrams of size n.
Also the number of (r,s) pair of permutations in S_n, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Connected version of A121357.
Labeled version of A121350.
Cf. also A005133, A121352, A121356.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!,n=1..N),t, ascending);
    # Alternatively:
    A121355_list := proc(len) local s,p; s := f -> seq(n!*coeff(series(f,z,n+1),z,n), n=0..len); p := m -> s(exp(z+z^m/m)); s(log(add((p(2)[n+1]*p(3)[n+1])*z^n/n!, n=0..len))) end: # Peter Luschny, Nov 16 2015
  • Mathematica
    m = 19; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; logexs23 = Series[Log[exs23], {t, 0, m}] // Normal; CoefficientList[logexs23, t]*Range[0, m]! // Rest (* Jean-François Alcover, Sep 06 2013, translated and adapted from Samuel Vidal's Maple program *)
  • PARI
    N=20; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    Vec(serlaplace(log(serconvol(A121357_ser, exp(x))))) \\ Gheorghe Coserea, May 10 2017

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121357 then A(z) = log(B(z)).

A121356 Number of transitive PSL_2(ZZ) actions on a finite dotted and labeled set of size n.

Original entry on oeis.org

1, 2, 24, 192, 600, 15840, 211680, 1612800, 43545600, 961632000, 11416204800, 365957222400, 10766518963200, 191617884057600, 6758061133824000, 254086360399872000, 6058779650187264000, 241382293453357056000
Offset: 1

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

"Dotted" means having a distinguished element. - N. J. A. Sloane, Feb 06 2012
Equivalently, the number of different connected, dotted and labeled trivalent diagrams of size n.

Crossrefs

Labeled version of A005133.
Labeled and dotted version of A121350.
Dotted version of A121355.
Connected and dotted version of A121357.
Connected, labeled and dotted version of A121352.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!*n,n=1..N),t, ascending);
  • Mathematica
    m = 18;
    s2 = Exp[t + t^2/2] + O[t]^(m+1) // Normal;
    s3 = Exp[t + t^3/3] + O[t]^(m+1) // Normal;
    s = Sum[s2[[n+1]] s3[[n+1]]/(t^n/n!), {n, 0, m}];
    CoefficientList[Log[s] + O[t]^(m+1), t] Range[0, m]! Range[0, m] // Rest (* Jean-François Alcover, Sep 02 2018, from Maple *)
  • PARI
    N=18; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    A121355_ser = serlaplace(log(serconvol(A121357_ser, exp(x))));
    Vec(x*A121355_ser') \\ Gheorghe Coserea, May 10 2017

Formula

a(n) = A121355(n)*n.
If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = z d/dz B(z) (Euler operator).

A121357 Number of different, not necessarily connected, labeled trivalent diagrams of size n.

Original entry on oeis.org

1, 1, 2, 12, 90, 546, 6156, 81432, 942012, 15114780, 294765336, 5069224656, 108842183352, 2770895886552, 64609245619920, 1742542175582496, 55074355772360976, 1626315165597840912, 53331321825434963232
Offset: 0

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of PSL_2(ZZ) actions on a finite labeled set of size n.
Also the number of (r,s) pair of permutations in S_n for which r is involutive, i.e., r^2 = id and s is of weak order three, i.e., s^3 = id.

Crossrefs

Unconnected version of A121355.
Labeled version of A121352.
Labeled, unconnected version of A121350.
Cf. also A005133, A121356.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : sort(add(op(n+1,exs23)*n!,n=0..N),t, ascending);
  • Mathematica
    m = 18; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; CoefficientList[ Sum[exs23[[n + 1]]*n!, {n, 0, m}], t] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)
  • PARI
    N=19; x='x+O('x^N);
    Vec(serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)))) \\ Gheorghe Coserea, May 10 2017

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = exp(B(z)).
Six-term linear recurrence: (n^3 + 12*n^2 + 47*n + 61)*a(n + 6) = (29040 + 239224*n^2 + 127628*n + 20715*n^6 + 252267*n^3 + 166304*n^4 + 71889*n^5 + 33*n^9 + 3943*n^7 + 476*n^8 + n^10)*a(n) + (441*n^4 + 3*n^6 + 2160 + 57*n^5 + 4572*n + 3948*n^2 + 1779*n^3)*a(n + 1) + (34920 + 61314*n + 45886*n^2 + 18989*n^3 + 4697*n^4 + 695*n^5 + 57*n^6 + 2*n^7)*a(n + 2) + (19640 + 79*n^5 + 3*n^6 + 861*n^4 + 27598*n + 16084*n^2 + 4975*n^3)*a(n + 3) + (17*n^3 + 425 + n^4 + 350*n + 113*n^2)*a(n + 4) + (1 + 20*n + 9*n^2 + n^3)*a(n + 5) with n = 0, 1, ...
a(n) = A000085(n) * A001470(n). - Mark van Hoeij, May 13 2013

A121352 Number of different, not necessarily connected, unlabeled trivalent diagrams of size n.

Original entry on oeis.org

1, 1, 2, 4, 7, 10, 24, 37, 63, 112, 200, 318, 607, 1058, 1814, 3247, 6004, 10316, 19048, 35478, 63496, 117023, 223822, 408121, 766661, 1484363, 2775201, 5270079, 10357605, 19714259, 37970066, 75439670, 146103241, 284719527, 571706625, 1123396477, 2214903209
Offset: 0

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of isomorphism class of PSL_2(ZZ) actions on finite sets of size n.
Also the number of (r,s) pair of permutations up to simultaneous conjugation, in S_n for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Not necessarily connected version of A121350.
Unlabeled version of A121357.
Cf. also A005133, A121355, A121356.

Programs

  • Maple
    mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) : v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) : N := 100 : ZF := 1 : for k from N to 1 by -1 do ZF := rem(ZF * add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor(N/ k)),t^(N+1),t) ; end do : sort(ZF,t, ascending);
  • Mathematica
    max = 34; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; ZF = 1; For[k = max, k >= 1, k--, ZF = PolynomialMod[ ZF*Sum[ n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}], t^(max + 1)]]; CoefficientList[ZF, t](* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)
  • PARI
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    seq(n)={Vec(prod(k=1, n, my(A=O(x^(n\k+1)), p=serconvol(exp(A + D(1,k) + D(3,k)), exp(A + D(1,k) + D(2,k)))); sum(r=0, n\k, r!*polcoef(p,r)/(k^r)*x^(k*r), O(x*x^n)) ))} \\ Andrew Howroyd, Jan 29 2025

Formula

Euler transform of A121350. - Andrew Howroyd, Jan 29 2025

Extensions

a(35) onwards from Andrew Howroyd, Jan 29 2025

A121350 Number of conjugacy class of index n subgroups in PSL_2 (ZZ).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 8, 6, 7, 14, 27, 26, 80, 133, 170, 348, 765, 1002, 2176, 4682, 6931, 13740, 31085, 48652, 96682, 217152, 362779, 707590, 1597130, 2789797, 5449439, 12233848, 22245655, 43480188, 97330468, 182619250, 358968639, 800299302, 1542254973, 3051310056, 6783358130
Offset: 0

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of isomorphism class of transitive PSL_2(ZZ) actions on a finite set of size n.
Also the number of different connected trivalent diagrams of size n.
Also the number of (r,s) pair of permutations in S_n, up to simultaneous conjugation, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Connected version of A121352.
Unlabeled version of A121355.
Cf. also A005133, A121356, A121357.

Programs

  • Maple
    with(numtheory,mobius) : mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) ; v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) ; N := 100 # For example. add(convert(taylor(log(add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor (N/k))),t=0,N+1),polynom),k=1..N) : lZF := sort (%,t, ascending) : add(mobius(k)/k*rem(subs(t=t^k,lZF),t^(N+1),t),k=1..N) : sort (%,t, ascending);
  • Mathematica
    max = 37; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; lZF[t_] = Sum[ Normal[ Series[ Log[ Sum[n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}]], {t, 0, max + 1}]], {k, 1, max}]; Rest[ CoefficientList[ Sum[ (MoebiusMu[k]*PolynomialMod[lZF[t^k], t^(max + 1)])/k, {k, 1, max}], t]] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121352 then A(z) = sum_{k > 0} mu(k)/k log(B(z^k)) (Moebius inversion formula).

Extensions

a(0)=1 prepended and a(38) onwards from Andrew Howroyd, Jan 29 2025