cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062980 a(0) = 1, a(1) = 5; for n > 1, a(n) = 6*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1).

Original entry on oeis.org

1, 5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750, 202903221120000, 13437880555850250, 970217083619328000, 75849500508999712500, 6383483988812390400000, 575440151532675686278125, 55318762960656722780160000
Offset: 0

Views

Author

Michael Praehofer (praehofer(AT)ma.tum.de), Jul 24 2001

Keywords

Comments

Number of rooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges). [Vidal]
Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a pointed set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point. [Vidal]
Also, the asymptotic expansion of the Airy function Ai'(x)/Ai(x) = -sqrt(x) - 1/(4x) + Sum_{n>=2} (-1)^n a(n) (4x)^ (1/2-3n/2). [Praehofer]
Maple 6 gives the wrong asymptotics of Ai'(x)=AiryAi(1,x) as x->oo apart from the 3rd term. Therefore asympt(AiryAi(1,x/4)/AiryAi(x/4),x); reproduces only the value a(1)=1 correctly.
Number of closed linear lambda terms (see [Bodini, Gardy, Jacquot, 2013] and [N. Zeilberger, 2015] references). - Pierre Lescanne, Feb 26 2017
Proved (bijection) by O. Bodini, D. Gardy, A. Jacquot (2013). - Olivier Bodini, Mar 30 2018
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			1 + 5*x + 60*x^2 + 1105*x^3 + 27120*x^4 + 828250*x^5 + 30220800*x^6 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
With interspersed zeros column 3 of A380622.
Pointed version of A129114.
Connected pointed version of A129115.

Programs

  • Haskell
    a062980 n = a062980_list !! n
    a062980_list = 1 : 5 : f 2 [5,1] where
       f u vs'@(v:vs) = w : f (u + 1) (w : vs') where
         w = 6 * u * v + sum (zipWith (*) vs_ $ reverse vs_)
         vs_ = init vs
    -- Reinhard Zumkeller, Jun 03 2013
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          6*n*a(n-1) +add(a(k)*a(n-k-1), k=1..n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 31 2017
  • Mathematica
    max = 16; f[y_] := -Sqrt[x] - 1/(4*x) + Sum[(-1)^n*a[n]*(4*x)^(1/2 - 3*(n/2)), {n, 2, max}] /. x -> 1/y^2; s[y_] := Normal[ Series[ AiryAiPrime[x] / AiryAi[x], {x, Infinity, max + 7}]] /. x -> 1/y^2; sol = SolveAlways[ Simplify[ f[y] == s[y], y > 0], y] // First; Join[{1, 5}, Table[a[n], {n, 3, max}] /. sol] (* Jean-François Alcover, Oct 09 2012, from Airy function asymptotics *)
    a[0] = 1; a[n_] := a[n] = (6*(n-1)+4)*a[n-1] + Sum[a[i]*a[n-i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Nov 29 2013, after Vladimir Reshetnikov *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6*k - 8) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return n*4 + 1 if n<2 else 6*n*a(n - 1) + sum(a(k)*a(n - k - 1) for k in range(1, n - 1))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 09 2017

Formula

With offset 1, then a(1) = 1 and, for n > 1, a(n) = (6*n-8)*a(n-1) + Sum_{k=1..n-1} a(k)*a(n-k) [Praehofer] [Martin and Kearney].
a(n) = (6/Pi^2)*Integral_{x=0..oo} ((4*x)^(3*n/2)/(Ai(x)^2 + Bi(x)^2)) dt. - Vladimir Reshetnikov, Sep 24 2013
a(n) ~ 3 * 6^n * n! / Pi. - Vaclav Kotesovec, Jan 19 2015
0 = 6*x^2*y' + x*y^2 + (4*x-1)*y + 1, where y(x) = Sum_{n>=0} a(n)*x^n. - Gheorghe Coserea, Apr 02 2017
From Peter Bala, May 21 2017: (Start)
G.f. as an S-fraction: A(x) = 1/(1 - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... See Stokes.
x*A(x) = B(x)/(1 + 2*B(x)), where B(x) = x + 7*x^2 + 84*x^3 + 1463*x^4 + ... is the o.g.f. of A172455.
A(x) = 1/(1 + 2*x - 7*x/(1 - 5*x/(1 - 13*x/(1 - 11*x/(1 - ... - (6*n + 1)*x/(1 - (6*n - 1)*x/(1 - .... (End)

Extensions

Entry revised by N. J. A. Sloane based on comments from Samuel A. Vidal, Mar 30 2007

A380626 Array read by antidiagonals: T(n,k) is the number of sensed k-regular combinatorial maps with n vertices, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 3, 1, 0, 1, 0, 7, 0, 1, 0, 1, 5, 29, 36, 11, 1, 0, 1, 0, 174, 0, 365, 0, 1, 0, 1, 18, 1475, 26614, 44106, 5250, 81, 1, 0, 1, 0, 16162, 0, 10107019, 0, 103801, 0, 1, 0, 1, 105, 214215, 102762168, 3703659517, 6605320523, 549530780, 2492164, 1228, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Comments

The combinatorial maps considered are connected, unrooted, unlabeled, may have loops and parallel edges and are of any orientable genus.

Examples

			Array begins:
==================================================================
n\k | 1 2  3       4         5          6          7         8 ...
----+-------------------------------------------------------------
  0 | 1 1  1       1         1          1          1         1 ...
  1 | 0 1  0       2         0          5          0        18 ...
  2 | 1 1  3       7        29        174       1475     16162 ...
  3 | 0 1  0      36         0      26614          0 102762168 ...
  4 | 0 1 11     365     44106   10107019 3703659517 ...
  5 | 0 1  0    5250         0 6605320523 ...
  6 | 0 1 81  103801 549530780 ...
  7 | 0 1  0 2492164 ...
   ...
		

Crossrefs

Columns 2..6 (odd columns with interspersed zeros) are A000012, A129114, A292206, A380627, A380628.
Row n=1 is A007769 (with interspersed zeros).
Cf. A170946, A380622 (rooted), A380629.

Programs

  • PARI
    InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))}
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    G(n,m)={my(t=m*n); prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(m,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%m==0, r!*polcoef(p,r)/(k^r)*x^(k*r/m)), O(x*x^n)) )}
    T(n,k)=if(n==0, 1, InvEulerT(Vec(-1 + G(n,k), -n))[n])

Formula

A380629(n) = Sum_{d|2*n} T(d,2*n/d).

A129115 Number of unrooted unlabeled not necessarily connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges).

Original entry on oeis.org

1, 3, 17, 124, 1618, 33564, 956263, 33736198, 1402665692, 66902717187, 3596481426812, 215049652739982, 14154852098315796, 1016911004448831247, 79174846391508487198, 6640511488761139957873, 596865894849670793348763, 57234563024075319273338452, 5832189914390355126473955563
Offset: 0

Views

Author

Samuel A. Vidal, Mar 30 2007

Keywords

Comments

Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a set of size 6*n with sigma^3=tau^2=1 with no fixed point.

Crossrefs

Not necessarily connected version of A129114.
Unrooted, not necessarily connected version of A062980.
Cf. also A121350, A121352, A005133.

Programs

  • PARI
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    seq(n)={my(t=6*n); Vec(prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(3,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%6==0, r!*polcoef(p,r)/(k^r)*x^(k*r/6)), O(x*x^n)) ))} \\ Andrew Howroyd, Jan 29 2025

Formula

Euler transform of A129114. - Andrew Howroyd, Jan 29 2025

Extensions

a(17) onwards from Andrew Howroyd, Jan 28 2025
Showing 1-3 of 3 results.